High-Fidelity Digital Burn Assessment: A Clinical Validation of the Digital Tool against Manual Lund and Browder Chart Gold Standard for Total Body Surface Area Estimation

Authors

  • Mohd Shahrul Suondoh Department of Plastic and Reconstructive Surgery, Hospital Kuala Lumpur, Malaysia https://orcid.org/0000-0001-8620-6226
  • Salmi Mohamed Sukur Deparment of Plastic and Reconstructive Surgery, Hospital Kuala Lumpur, Malaysia
  • Mohammad Ali Mat Zain Department of Plastic and Reconstructive Surgery, Hospital Kuala Lumpur, Malaysia
  • Rohaida Basiruddin Azman Hashim International Business School, Universiti Teknologi Malaysia, Malaysia https://orcid.org/0000-0002-3743-2427

DOI:

https://doi.org/10.5281/zenodo.18048397

Keywords:

Burn, Digital Tool, Total Body Surface Area, Diagnosis Accuracy, Malaysia

Abstract

Precise total body surface area estimation is paramount for effective burn care. This study aimed to validate the E-Burn app, a digital tool, by comparing its total body surface area estimations against the established Lund and Browder chart, the clinical gold standard. A prospective, cross-sectional study was conducted on 101 burn cases. Total body surface area was independently estimated in parallel using both the E-Burn app and the Lund and Browder chart. Data were analysed using Wilcoxon signed rank tests, Intraclass Correlation Coefficients, and Bland-Altman plots to assess systematic difference, absolute agreement, and bias. The E-Burn app demonstrated excellent agreement with the Lund and Browder chart, achieving an outstanding Intraclass Correlation Coefficients of 0.997. Although a statistically significant median difference was identified (p < 0.001), Bland-Altman analysis quantified this as a clinically minor mean bias of -0.35%. Crucially, the 95% limits of agreement were impressively narrow (+1.32% to -2.02%), indicating minimal random variation and high consistency. The E-Burn app is a precise and highly reliable tool for TBSA estimation, with its minor bias being clinically inconsequential. While this single-centre study warrants future multi-centre validation, these findings robustly support the app’s integration into clinical practice to enhance efficiency and consistency, critically supporting the development of future innovative digital burn tools in Malaysia. 

References

Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews Disease Primers, 6(1). [CrossRef] [PubMed]

Lee, N., Bae, Y., Jang, S., Lee, D. W., & Lee, S. W. (2025). Global, Regional, and National Burden of Burn Injury by Total Body Surface Area (TBSA) Involvement from 1990 to 2021, with Projections of Prevalence to 2050. Healthcare (Basel), 13(16), 2077. [CrossRef] [PubMed]

Snell, J. A., Loh, N. H. W., Mahambrey, T., & Shokrollahi, K. (2013). Clinical review: The critical care management of the burn patient. Critical Care, 17(5). [CrossRef] [PubMed]

Heard, J., Ren, Y., Sen, S., Romanowski, K. S., Palmieri, T. L., & Greenhalgh, D. G. (2024). 105 Burn Injury Severity: Proposed Definitions Based on the National Burn Research Dataset. Journal of Burn Care & Research, 45(Supplement_1), 85–85. [CrossRef] [PubMed]

Milner, S. M. (2023). Burn Size Estimation: A Critical Component of Burn Care. Eplasty, 23:QA13. [PubMed]

Cartotto, R., Johnson, L. S., Savetamal, A., Greenhalgh, D., Kubasiak, J. C., Pham, T. N., & Main, E. (2024). American Burn Association Clinical Practice Guidelines on Burn Shock Resuscitation. Journal of Burn Care and Research, 45(3), 565–589. [CrossRef] [PubMed]

Radzikowska-Büchner, E., Łopuszyńska, I., Flieger, W., Tobiasz, M., Maciejewski, R., & Flieger, J. (2023). An Overview of Recent Developments in the Management of Burn Injuries. International Journal of Molecular Sciences, 24(22), 16357. [CrossRef] [PubMed]

Surgeon, P. (2024). Care of Burns in Scotland Paediatric guideline : Fluid resuscitation, (February), 1–19.

Corona-Figueroa, A. A., Vélez-Palafox, M., Marquez-Gutierrez, E. A., Barlandas-Quintana, E., & Gutierrez-Barreto, S. E. (2024). Burn vs. Referral Physicians’ TBSA Estimation Errors: A Cross-Sectional Study at the National Burn Center. Burns Open, 8(4).

Parvizi, D., Kamolz, L. P., Giretzlehner, M., Haller, H. L., Trop, M., Selig, H., Lumenta, D. B. (2014). The potential impact of wrong TBSA estimations on fluid resuscitation in patients suffering from burns: Things to keep in mind. Burns, 40(2), 241–245. [CrossRef] [PubMed]

Carrougher, G. J., & Pham, T. N. (2024). Burn size estimation: A remarkable history with clinical practice implications. Burns Open, 8: 47–52 [CrossRef]

Harish, V., Raymond, A. P., Issler, A. C., Lajevardi, S. S., Chang, L. Y., Maitz, P. K. M., & Kennedy, P. (2015). Accuracy of burn size estimation in patients transferred to adult Burn Units in Sydney, Australia: An audit of 698 patients. Burns, 41(1), 91–99. [CrossRef] [PubMed]

Cocchi, E., Cassalia, F., Palo, S., D’Acunto, C., Belloni Fortina, A., Stella, M., & Melandri, D. (2024). Acute phase optimization in burn care: Online tools and comprehensive predictive models for adult and pediatric patients. Burns Open, 8(4), 100370. [CrossRef]

Suman, A., & Owen, J. (2020). Update on the management of burns in paediatrics. BJA Education, 20(3), 103–110. [CrossRef] [PubMed]

Carrougher, G. J., & Pham, T. N. (2024). Burn size estimation: A remarkable history with clinical practice implications. Burns Open, 8(2), 47–52. [CrossRef]

Waw, S. (2023). Estımatıon of total body surface area burned: a comparıson between burn unıt and referrıng facılıtıes. Annals of Burns and Fire Disasters.

Ray, W. C., Rajab, A., Alexander, H., Chmil, B., Rumpf, R. W., Thakkar, R., Fabia, R. (2022). A 1% TBSA Chart Reduces Math Errors While Retaining Acceptable First-Estimate Accuracy. Journal of Burn Care and Research, 43(3), 665–678. [CrossRef] [PubMed]

Chong, H. P., Quinn, L., Jeeves, A., Cooksey, R., Lodge, M., Carney, B., & Molony, D. (2020). A comparison study of methods for estimation of a burn surface area: Lund and Browder, e-burn and Mersey Burns. Burns, 46(2), 483–489. [CrossRef] [PubMed]

Ibrahim, S., Abo-Alez, R., Hamza, F., Nassar, L., Taman, E., & Huta, A. E. M. (2021). A Computer System for Classification of Burns and Determination of Fluid and Nutritional Needs for Burn Patients. International Journal of Medical Arts, 3(2), 1329–1341. [CrossRef]

Fontaine, M., Ravat, F., & Latarjet, J. (2018). The e-burn application A simple mobile tool to assess TBSA of burn wounds. Burns, 44(1), 237–238. [CrossRef] [PubMed]

Yeh, C. C., Lin, Y. S., Chen, C. C., & Liu, C. F. (2023). Implementing AI Models for Prognostic Predictions in High-Risk Burn Patients. Diagnostics, 13(18), 2984. [CrossRef] [PubMed]

Tran, N. K., Sen, S., Palmieri, T. L., Lima, K., Falwell, S., Wajda, J., & Rashidi, H. H. (2019). Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: A proof of concept. Burns, 45(6), 1350–1358. [CrossRef] [PubMed]

Abrams, T. E., Lloyd, A. A., Elzey, L. E., & Hickerson, W. L. (2019). The Bridge: A mobile application for burn patients. Burns, 45(3), 699–704. [CrossRef] [PubMed]

Holm, S., Engström, O., Petäjä, I., & Huss, F. (2021). Does the estimation of burn extent at admission differ from the assessment at discharge? Scars, Burns & Healing, 7, 205951312110194. [CrossRef] [PubMed]

Downloads

Published

2025-12-30

How to Cite

Suondoh, M. S., Sukur, S. M., Mat Zain, M. A., & Basiruddin, R. (2025). High-Fidelity Digital Burn Assessment: A Clinical Validation of the Digital Tool against Manual Lund and Browder Chart Gold Standard for Total Body Surface Area Estimation. International Journal of Digital Health & Patient Care, 2(2), 79–85. https://doi.org/10.5281/zenodo.18048397