Microbiome-Driven Nutrition for Active Aging

Authors

DOI:

https://doi.org/10.5281/zenodo.18002345

Keywords:

Active Aging , Gut Microbiome, Gut-Brain Axis , Precision Nutrition , Metabolic Resilience , Healthy Longevity

Abstract

Advancing age is accompanied by physiological, metabolic, and cognitive changes that are closely linked to alterations in the gut microbiome. Recent evidence demonstrates that dietary phytonutrients, prebiotics, probiotics, and postbiotics can synergistically promote active aging by modulating gut microbial composition, enhancing immune regulation, and supporting neurocognitive function. This review synthesizes recent mechanistic insights into how these bioactive compounds interact with the gut-microbiota-immune-metabolic axis to sustain health and longevity. Phytonutrients such as polyphenols and carotenoids promote microbial diversity and short-chain fatty acid (SCFA) production, reducing oxidative stress and systemic inflammation. Prebiotics, including inulin and galactooligosaccharides, selectively stimulate beneficial taxa like Bifidobacterium and Lactobacillus, improving intestinal integrity and metabolic resilience. Probiotics reinforce mucosal defense, modulate cytokine networks, and contribute to mental well-being via the gut-brain axis, while postbiotics - non-viable microbial metabolites - offer safe and potent immunomodulatory and anti-inflammatory effects. Collectively, these biotic agents form a microbiome-centered nutritional strategy capable of mitigating age-related metabolic decline, cognitive impairment, and chronic inflammation. Integrative approaches combining synbiotics and phytonutrient-rich diets represent a promising avenue for extending healthspan and fostering active, independent living in older adults.

Author Biographies

Ellada Eldar qizi Huseynova, Azerbaijan Medical University

Assist,Prof.

Farah Ismail Mammаdova, Azerbaijan Medical University

Senior Assistant

Sabina Rafig qizi Guliyeva, Azerbaijan Medical University

Assoc.Prof.

Samira Arif qizi Baghirova, Azerbaijan Medical University

Assist. Prof.

Ali Nadir Aliyev , Azerbaijan Medical University

Assoc.Prof.

References

Amirova M.F., Mamedova Kh.R., & Huseynova E.E. (2021). Factors that stimulate the spread of pathogenic strains of microorganisms in the body. Modern achievements of Azerbaijan Medicine, 2:126-129 (in Russian)

Hou, K., Wu, ZX., Chen, XY. et al. (2022). Microbiota in health and diseases. Sig Transduct Target Ther, 7, 135. [CrossRef] [PubMed]

John, H. T., Thomas, T. C., Chukwuebuka, E. C., Ali, A. B., Anass, R., Tefera, Y. Y., Babu, B., Negrut, N., Ferician, A., & Marian, P. (2025). The Microbiota–Human Health Axis. Microorganisms, 13(4), 948. [CrossRef] [PubMed]

Santana, P. T., Rosas, S. L. B., Ribeiro, B. E., Marinho, Y., & de Souza, H. S. P. (2022). Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci, 23(7), 3464. [CrossRef] [PubMed]

Capozzi, A., Saucier, C., Bisbal, C., & Lambert, K. (2022). Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. Molecules 27, 6594. [CrossRef] [PubMed]

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. [CrossRef] [PubMed]

Wang, Y., He, H., Xu, J., & Li, B. (2024). Short-chain fatty acids: Bridges between diet, gut microbiota, and health. Journal of Gastroenterology and Hepatology, 39(9), 1728-1736. [CrossRef] [PubMed]

Li J., Zhang L., Wu T., Li Y., Zhou X., & Ruan Z. (2020). “Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier.” Journal of Agricultural and Food Chemistry, 69(5), 1495–1502. [CrossRef]

Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10, 277. [CrossRef] [PubMed]

Afzaal, M., Saeed, F., Shah, Y. A., Hussain, M., Rabail, R., Socol, C. T., & Aadil, R. M. (2022). Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology, 13, 999001. [CrossRef] [PubMed]

Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114[CrossRef]

Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. (2024). The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci, 25(13), 7379. [CrossRef] [PubMed]

Sankarganesh, P., Bhunia, A., Kumar, A. G., Babu, A. S., Gopukumar, S. T., & Lokesh, E. (2025). Short-chain fatty acids (SCFAs) in gut health: Implications for drug metabolism and therapeutics. Medicine in Microecology, 25, 100139. [CrossRef]

Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M., & Kim, C. H. (2013). Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology, (2), 396-406.e1-10. [CrossRef] [PubMed]

Kim, C.H. (2023). Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol, 20, 341–350. [CrossRef] [PubMed]

Wang, Y., He, H., Xu, J., & Li, B. (2024). Short-chain fatty acids: Bridges between diet, gut microbiota, and health. Journal of Gastroenterology and Hepatology, 39(9), 1728-1736. [CrossRef] [PubMed]

Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24(8), 1415–1422. [CrossRef] [PubMed]

Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., & Gibson, G. R. (2021). Shaping the Future of Probiotics and Prebiotics. Trends Microbiol, (8), 667-685. [CrossRef] [PubMed]

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502. [CrossRef] [PubMed]

Ganesan, K., & Xu, B. (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences, 18(11), 2331. [CrossRef] [PubMed]

Silva, Y. P., Bernardi, A., Frozza, R. L. (2020). The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne), 11:25. [CrossRef] [PubMed]

Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, & Elinav E. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307-3328.e19. [CrossRef] [PubMed]

Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., & Gueimonde, M. (2015). The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food & Function, 6(8), 2424–2439. [CrossRef] [PubMed]

Smolinska S, Popescu F-D, Zemelka-Wiacek M. (2025). A Review of the Influence of Prebiotics, Probiotics, Synbiotics, and Postbiotics on the Human Gut Microbiome and Intestinal Integrity. Journal of Clinical Medicine. 14(11), 3673. [CrossRef] [PubMed]

Wang, L.-Y., He, L.-H., Xu, L.-J., & Li, S.-B. (2024). Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol, 39(9), 1728-1736. [CrossRef] [PubMed]

De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L., & Ercolini, D. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812–1821. [CrossRef] [PubMed]

Chen, F., Xiao, M., Hu, S., & Wang, M. (2024). Keap1–Nrf2 pathway: A key mechanism in the occurrence and development of cancer. Frontiers in Oncology, 14, 1381467. [CrossRef] [PubMed]

Gado, F., Ferrario, G., Della Vedova, L., Zoanni, B., Altomare, A., Carini, M., & Baron, G. (2023). Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Molecules 28, 1356. [CrossRef] [PubMed]

Kadim, M., Darma, A., Kartjito, M. S., Dilantika, C., Basrowi, R. W., Sungono, V, Jo, J. (2025). Gastrointestinal Health and Immunity of Milk Formula Supplemented with a Prebiotic Mixture of Short-Chain Galacto-oligosaccharides and Long-Chain Fructo-Oligosaccharides (9:1) in Healthy Infants and Toddlers: A Systematic Review with Meta-Analysis. Pediatr Gastroenterol Hepatol Nutr, 28(1), 1-18. [CrossRef] [PubMed]

Cheng H, Guan X, Chen D, Ma W. (2019). The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 7(12):583. [CrossRef] [PubMed]

Ren, L., Liu, S., Wang, S., Li, Z., Lu, F., & Luo, X. (2024). Synergistic Probiotic–Postbiotic Therapy Ameliorates Hyperuricemia via Multi-Target Regulation of Purine Metabolism and Gut Microbiota. Foods, 14(13), 2213. [CrossRef] [PubMed]

Liang, B., Xing, D. (2023). The Current and Future Perspectives of Postbiotics. Probiotics & Antimicro. Prot. 15, 1626–1643. [CrossRef] [PubMed]

Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. (2023). Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol, 13(3):230014. [CrossRef] [PubMed]

Plaza-Díaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10(suppl_1), S49–S66. [CrossRef] [PubMed]

Asefa, Z., Belay, A., Welelaw, E., & Haile, M. (2025). Postbiotics and their biotherapeutic potential for chronic disease and their feature perspective: A review. Frontiers in Microbiomes, 4, 1489339. [CrossRef]

Saito, S., Okuno, A., Cao, D.-Y., Peng, Z., Wu, H.-Y., & Lin, S.-H. (2020). Bacterial Lipoteichoic Acid Attenuates Toll-Like Receptor Dependent Dendritic Cells Activation and Inflammatory Response. Pathogens 9, 825. [CrossRef] [PubMed]

Jastrząb, R., Graczyk, D., & Siedlecki, P. (2020). Molecular and Cellular Mechanisms Influenced by Postbiotics. International Journal of Molecular Sciences, 22(24), 13475. [CrossRef] [PubMed]

Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435. [CrossRef] [PubMed]

Yu, W., Sun, S., & Fu, Q. (2025). The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol, 16:1519925. [CrossRef] [PubMed]

Signorelli, A. (2024). Why prebiotics are the unsung heroes of gut health. Vogue. https://www.vogue. com/article/prebiotics-health-benefits

Swanson, K. S., Gibson, G. R., Hutkins, R., Reimer, R. A., Reid, G., Verbeke, K., & Scott, K. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology, 17(11), 687–701. [CrossRef] [PubMed]

Yu W, Sun S, Fu Q. (2025). The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol, 7;16, 1519925. [CrossRef] [PubMed]

Downloads

Published

2025-12-30

How to Cite

Amirova, M., Musayev, K. N., Huseynova, E. E. qizi, Mammаdova F. I., Guliyeva, S. R. qizi, Baghirova, S. A. qizi, & Aliyev , A. N. (2025). Microbiome-Driven Nutrition for Active Aging. International Journal of Active & Healthy Aging, 3(2), 62–70. https://doi.org/10.5281/zenodo.18002345