Analysis of Inorganic Blood Element Fluctuations in the Context of Hyperglycemia Risk Factors
DOI:
https://doi.org/10.5281/zenodo.15643994Keywords:
Hyperglycemia , Iron , Calcium , Magnesium , MicroelementsAbstract
Hyperglycemia (HG) is a prevalent condition among patients, necessitating continued efforts to identify effective therapeutic interventions that can improve population health outcomes. Given the extensive side effects associated with chemical pharmacological treatments, scientific research has increasingly focused on biological compounds that align more closely with normal physiological metabolism rather than the metabolism of xenobiotics. In this context, contemporary medicine has turned its attention to the role of macro- and micronutrients, which have the potential to stabilize the microbiota, the primary regulator of metabolic processes, in line with a pathogenetic approach to hyperglycemia. The association between macro- and microelements and various etiological factors of hyperglycemia has been an area of active investigation. Within this framework, the role of inorganic blood elements in the development and progression of hyperglycemia is of particular interest. Our study aims to investigate the underlying reasons for discrepancies observed in the literature concerning the impact of micro- and macroelements in hyperglycemia. For this, a retrospective analysis was conducted on 2024 biochemical laboratory data from the Azerbaijan Medical University Teaching Surgery Clinic. Our findings reveal a statistically significant inverse correlation between hyperglycemia and serum calcium and magnesium levels. Notably, we present pioneering evidence that changes in the concentrations of inorganic blood elements were significant (P=0.01 and 0.001 for Ca and Mg, respectively) despite remaining within the generally accepted normal reference ranges.References
Alamri, B. N., Bahabri, A., Aldereihim, A. A., Alabduljabbar, M., Alsubaie, M. M., Alnaqeb D., Almogbel, E., Metias, N. S., Alotaibi, O. A., & Al-Rubeaan, K. (2019). Hyperglycemia effect on red blood cells indices. Eur Rev Med Pharmacol Sci, 23(5), 2139-2150. [CrossRef] [PubMed]
Stentz, F. B. (2021). Hyperglycemia- and Hyperlipidemia-Induced Inflammation and Oxidative Stress through Human T Lymphocytes and Human Aortic Endothelial Cells (HAEC). Intech Open, 598-606. [CrossRef]
Darra, A., Singh, V., Jena, A., Popli, P., Nada, R., Gupta, P. et al. (2023). Hyperglycemia is associated with duodenal dysbiosis and altered duodenal microenvironment. Sci Rep, 13, 11038 [CrossRef]
Orešković, D., Madero Pohlen, A., Cvitković, I. et al., (2024). Chronic hyperglycemia and intracranial meningiomas. BMC Cancer, 24, 488. [CrossRef]
Mamadova, V., M., K., Abdullaeva, A., M., K., Amirova, M., F., K., & Nasirova, V., B., K. (2024). A novel treatment for ptosis complication after preseptal cellulitis in diabetic patient. J of Law and sustainable development. Miami12(10): 01-13/e03847. [CrossRef]
Morales J, Schneider D. (2014). Hypoglycemia. The American Journal of Medicine, Am J Med, 127(10 Suppl):S17-24. [CrossRef] [PubMed]
Martin ET, Kaye KS, Knott C, Nguyen H, Santarossa M, Evans R, Bertran E, Jaber L. (2016). Diabetes and Risk of Surgical Site Infection: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol, 37(1):88-99. [CrossRef] [PubMed]
Tyurenkov I. N., Kurkin D. V., Bakulin D. A., Volotova E. V., Morkovin E. I., Chafeev M. A. et al., (2018). Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16. Frontiers in Endocrinology, 9:543. [CrossRef] [PubMed]
Roberta B, and Corsini A. (2011). Pharmacology of dipeptidyl peptidase-4 inhibitors." Drugs, 71(11), 1441-1467. [CrossRef] [PubMed]
Farmanova N T, Farmanov Sh I, & Kadirov M A. (2017). Pharmacological activity and studying of the chemical compound of hypoglycemic gathering. Austrian Journal of Technical and Natural Sciences, (3-4), 37-41.
Khangholi, S., Abdul Majid F.A., Ahmed Berwary N.J., Ahmad, F., & Bin Abd Aziz, R. (2016). The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition. Planta Med, 82(01/02): 32-45. [CrossRef] [PubMed]
Ramos, G. A., Hanley, A. A., Aguayo, J., Warshak, C. R., & Kim, J. H., (2012). Neonatal chemical hypoglycemia in newborns from pregnancies complicated by type 2 and gestational diabetes mellitus - the importance of neonatal ponderal index. J Matern Fetal Neonatal Med, 25(3):267-71. [CrossRef] [PubMed]
Duan, W. X., Yang, X. H., Zhang, H. F, Feng, J., & Zhang M. Y. (2022). Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol Trace Elem Res, 200(10):4404-4418. [CrossRef] [PubMed]
Jingjie, W., Fangfei, L., Zeng, D., Baohua, K., Hao, W., & Xiufang, X. (2022). Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. Food Science and Technology, 160:1096-1127. [CrossRef]
Levine, M., Boyer, E. W., Pozner, C. N., Geib, A. J., Thomsen, T., Mick, N., & Thomas, S. H. (2007). Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit Care Med, 35(9):2071-5. [CrossRef] [PubMed]
Chen, S. M, Gao, F., Li, M., Dong, T. W., & Geng, Z. (2023). Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms.Front. Pharmacol., Front Pharmacol, 6:14:1045309. [CrossRef] [PubMed]
Hu, Y., Zhang, Y., Cui, X., Wang, D., Hu, Y., & Wang, C. (2024). Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review.Int J Biol Macromol, 268(Pt 1):131701. [CrossRef] [PubMed]
Gao, M., & Xu, S. (1999). Advances in the study of hypoglycemic effective monomer elements in natural pharmaceutical materials and their pharmacological action. Zhong Yao Cai, 22(10):542-5. [PubMed]
van Dijk, P. R., Schutten, J. C., Jeyarajah, E. J, Kootstra-Ros, J. E, Connelly, M. A., Bakker, S. J. L, Dullaart, R. P. F. (2019). Blood Mg2+ is more closely associated with hyperglycaemia than with hypertriacylglycerolaemia: the PREVEND study. Diabetologia. 62(9), 1732-1734. [CrossRef] [PubMed]
Obeid, O. (2019). Effect of Bread Fortification with Phosphorus and Lysine on Postprandial Glycemia and Thermogenesis. American University of Beirut Medical Center. https://trial.medpath.com/clinical-trial/a7f3a452d1db1072/effect-bread-fortification -phosphorus-lysine-glycaemia-thermogenesis
Pavie, J., Scemla, A., Bouldouyre, M. A., Pillebout, E., Verine, J., & Molina, J. M. (2011). Severe acute renal failure in an HIV-infected patient after only 2 weeks of tenofovir-based antiretroviral therapy. AIDS Patient Care STDS, 25(8):457-60. [CrossRef] [PubMed]
Veronese, N., Watutantrige-Fernando, S., Luchini, C., Solmi, M., Sartore, G., Sergi, G., Manzato, E., Barbagallo, M., Maggi, S., & Stubbs, B. (2016). Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials. Eur J Clin Nutr. 2016 Dec;70(12):1354-1359. [CrossRef] [PubMed]
Kostov, K. (2019). Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int J Mol Sci, 20(6), 1351. [CrossRef] [PubMed]
Rayssiguier, Y., Libako, P., Nowacki, W., & Rock, E. (2010). Magnesium deficiency and metabolic syndrome: Stress and inflammation may reflect calcium activation. Magnes Res, 23(2), 73-80. [CrossRef] [PubMed]
Henkin, R. I. (2018). Calcium and Magnesium Levels Change in Relationship to Variations in Usual Dietary Nutrient Intake. J Nutrition Health Food Sci, 6(5), 1-17. [CrossRef]
Takaya, J., Higashino, H., & Kobayashi, Y. (2004). Intracellular magnesium and insulin resistance. Magnes Res, 17(2), 126-36. [PubMed]
Botturi, A., Ciappolino, V., Delvecchio, G., Boscutti, A., Viscardi, B., & Brambilla, P. (2004). The role and the effect of magnesium in mental disorders: A systematic review. Nutrients, 12(6), 1661. [CrossRef] [PubMed]
Djurhuus, M. S., Skøtt, P., Vaag, A., Hother-Nielsen, O., Andersen, P., Parving, H. H., & Klitgaard, N. A. (2000). Hyperglycaemia enhances renal magnesium excretion in type 1 diabetic patients. Scand J Clin Lab Invest, 60(5), 403-9. [CrossRef] [PubMed]
Rains, J. L., & Jain, S. K. (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med, 50(5), 567-75. [CrossRef] [PubMed]
Backe, M. B., Moen, I. W., Ellervik, C., Hansen, J. B., & Mandrup-Poulsen, T. (2016). Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu Rev Nutr, 36:241-73. [CrossRef] [PubMed]
Alcantara, O., Obeid, L., Hannun, Y., Ponka, P., & Boldt, D. H. (1994). Regulation of protein kinase C (PKC) expression by iron: Effect of different iron compounds on PKC-β and PKC-α gene expression and role of the 5′-flanking region of the PKC-β gene in the response to ferric transferrin. Blood, (10), 3510-7. [PubMed]
Kuvibidila, S. R., Kitchens, D., & Baliga, B. S. (1999). In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. J Cell Biochem, 74(3), 468-78. [PubMed]
Mellor, K. M., Ritchie, R. H., & Delbridge, L. M. D. (2010). Reactive oxygen species and insulin-resistant cardiomyopathy. Clin Exp Pharmacol Physiol, 37(2), 222-8. [CrossRef] [PubMed]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Active & Healthy Aging

This work is licensed under a Creative Commons Attribution 4.0 International License.