

Personalized Learning Pathways: Using NLP and Blockchain for Adaptive Curriculum Design and Student Progress Tracking

Osamah Mohammed Jasim*¹ and Pushkar Baranwal¹

¹*University of Delhi, South Campus, Institute of Informatics and Communication, India*

Article Info

Received: 12 June 2025
Revised: 16 October 2025
Accepted: 16 November 2025
Published: 30 December 2025

ABSTRACT

The integration of artificial intelligence and distributed ledger technologies has created unprecedented opportunities to revolutionize education through personalized learning experiences. This paper presents a novel framework that combines Natural Language Processing (NLP) and blockchain technology to create dynamic, adaptive learning pathways tailored to individual student needs while maintaining secure, transparent records of academic progress. Our system employs sophisticated NLP algorithms to analyze student interactions, comprehension patterns, and learning preferences, subsequently generating personalized curriculum recommendations that evolve based on continuous assessment data. Blockchain technology provides an immutable, verifiable record of student achievements and competencies, enabling seamless credentialing across educational institutions while preserving student privacy. We demonstrate the implementation of this framework through a pilot study involving 327 undergraduate students across three disciplines, revealing significant improvements in learning outcomes, engagement metrics, and self-directed learning capabilities. Results indicate a 32% increase in concept mastery compared to traditional teaching methods, with 87% of participants reporting enhanced motivation when using the personalized learning system. This research addresses critical challenges in modern educational environments, including scalable personalization, credential verification, and learning continuity across institutional boundaries. P-values were reported to indicate the statistical significance of group differences. Our findings suggest that the synergistic application of NLP and blockchain can fundamentally transform curriculum design and progress tracking, creating more equitable, effective, and engaging educational experiences that prepare students for an increasingly complex and dynamic professional landscape.

Keywords

Artificial Intelligence
Natural Language
Blockchain
Higher Education
Personalized Learning
System

1. INTRODUCTION

The landscape of higher education is undergoing a profound transformation, driven by technological innovations and changing expectations of what constitutes effective learning. Traditional educational models, characterized by standardized curricula and assessment methods, are increasingly recognized as insufficient for addressing the diverse needs, backgrounds, and learning styles of modern student populations [1].

The concept of personalized learning, tailoring educational experiences to individual student characteristics, has emerged as a promising approach to enhance learning outcomes and student engagement [2].

However, implementing personalized learning at scale presents significant challenges

related to resource allocation, accurate assessment, and credential verification across institutional boundaries. Recent advances in artificial intelligence, particularly in Natural Language Processing (NLP), offer powerful tools for analyzing student interactions, identifying knowledge gaps, and generating customized learning materials [3].

Concurrently, blockchain technology has demonstrated considerable potential for creating secure, transparent records of achievement that can be verified without centralized authority, potentially resolving longstanding issues in credential portability and authentication [4].

Despite these technological developments, there remains a critical gap in integrating these

*Corresponding author

*e-mail: osamahmohammed@south.du.ac.in
ORCID ID: 0000-0002-6303-8175

How to cite this article

Jasim, O. M., & Baranwal, P. (2025). Personalized Learning Pathways: Using NLP and Blockchain for Adaptive Curriculum Design and Student Progress Tracking. *J Sport Industry & Blockchain Tech*, 2(2), 69-77.

technologies into a cohesive system that addresses the full spectrum of personalized learning challenges [5].

This paper introduces a comprehensive framework that leverages both NLP and blockchain technologies to create adaptive curriculum pathways while maintaining secure, transparent records of student progress. Our approach utilizes advanced NLP techniques to process a variety of student data sources including written assignments, discussion contributions, and interaction patterns with learning materials to develop nuanced profiles of student understanding, learning preferences, and areas requiring additional support.

These profiles inform the generation of personalized learning pathways that continuously adapt based on performance metrics and evolving student needs. Complementing this adaptive learning system, we implement a blockchain-based credentialing mechanism that records fine-grained achievements, competencies, and learning experiences in a tamper resistant, decentralized ledger.

This system enables students to maintain comprehensive records of their educational journey that can be selectively shared with educational institutions, employers, or other stakeholders without compromising privacy or security. The blockchain component addresses critical issues in educational credentialing, including verification of micro-credentials, prevention of credential fraud, and seamless transfer of academic achievements across institutional boundaries. By integrating these technologies, our framework represents a significant advancement in the field of educational technology, offering a scalable approach to personalization that maintains rigorous standards of assessment while providing students with greater agency in their educational journeys.

The sections that follow detail the theoretical foundations, implementation methodology, empirical results, and broader implications of this innovative approach to curriculum design and student progress tracking.

2. LITERATURE REVIEW

The evolution of personalized learning systems represents a convergence of educational theory, cognitive science, and technological innovation spanning several decades. This review examines the foundational research that informs our integrated NLP and blockchain framework, highlighting both theoretical underpinnings and technological developments that enable new

approaches to adaptive curriculum design and progress tracking.

2.1. Theoretical Foundations of Personalized Learning

The concept of personalized learning is rooted in constructivist theories of education, which emphasize the active role of learners in constructing knowledge based on their experiences and prior understanding [6]. Building on this foundation, contemporary educational researchers have established compelling evidence for the efficacy of adaptive instructional approaches. Meta-analyses by [7] demonstrate that personalized feedback and adaptive difficulty levels produce effect sizes significantly higher than standardized instructional methods. Similarly, self-determination theory [8], suggests that learning environments that support autonomy, competence, and relatedness foster deeper engagement and intrinsic motivation key factors in successful educational outcomes. Nevertheless, implementing these theoretical insights at scale has proven challenging. Traditional personalized learning approaches require intensive instructor involvement, creating unsustainable resource demands in large educational settings [9]. Furthermore, conventional educational structures often prioritize standardized assessment over personalized development, creating systemic barriers to widespread adoption of adaptive learning methodologies [10].

2.2. NLP Applications in Educational Contexts

Natural Language Processing has emerged as a transformative technology in educational settings, capable of analyzing textual data to derive insights about student comprehension, knowledge states, and learning patterns. Fundamental work by Crossley [11] established reliable correlations between linguistic features in student writing and levels of conceptual understanding, providing empirical support for NLP-based assessment. Building on these foundations, recent systems have demonstrated impressive capabilities in automated essay evaluation [12], discussion forum analysis [13], and generation of personalized feedback [14]. Particularly relevant to our framework, research by [15], demonstrated that transformer-based language models can effectively identify conceptual misunderstandings in student explanations with accuracy comparable to expert human instructors. Similarly, [13] established that sequential analysis of student writing samples enables reliable tracking of knowledge development trajectories, allowing

for timely intervention when progress deviates from expected patterns. These capabilities form the foundation of our NLP-driven adaptive curriculum component.

2.3. Blockchain Technology in Educational Credentialing

Technology represents a paradigm shift in how educational achievements can be recorded, verified, and shared. Initial explorations of blockchain in education focused primarily on credential verification to prevent fraud [15]. However, recent applications have expanded to include more sophisticated implementations such as smart contracts for automated credentialing based on predefined achievement criteria [16] and self-sovereign identity systems that give students control over their educational records [17]. Research by [18] demonstrated that blockchain-based micro-credentials significantly reduce verification overhead for employers while increasing student motivation through immediate recognition of incremental achievements. Additionally [19], documented improved educational continuity for transfer students when blockchain records facilitated seamless recognition of prior learning across institutions. These findings suggest that blockchain technology can address longstanding challenges in credential portability while providing students with more granular recognition of their educational accomplishments.

2.4. Integration Challenges and Opportunities

Despite the promising developments in both NLP and blockchain technologies, their integration into cohesive educational systems presents significant technical and pedagogical challenges. Early attempts at combined implementations have encountered difficulties related to data privacy [3], algorithmic bias in assessment [4], and interoperability between institutional systems [20]. Furthermore, educational stakeholders have expressed concerns about the potential for technology-driven approaches to diminish the human elements of teaching and learning [21]. Nevertheless, preliminary studies of integrated systems suggest substantial potential benefits. Research [22] demonstrated that combining NLP-driven content adaptation with blockchain verification can increase completion rates in online courses by 47% compared to traditional approaches. Similarly, pilot programs implementing aspects of integrated systems have reported significant improvements in student engagement [23], and knowledge transfer across

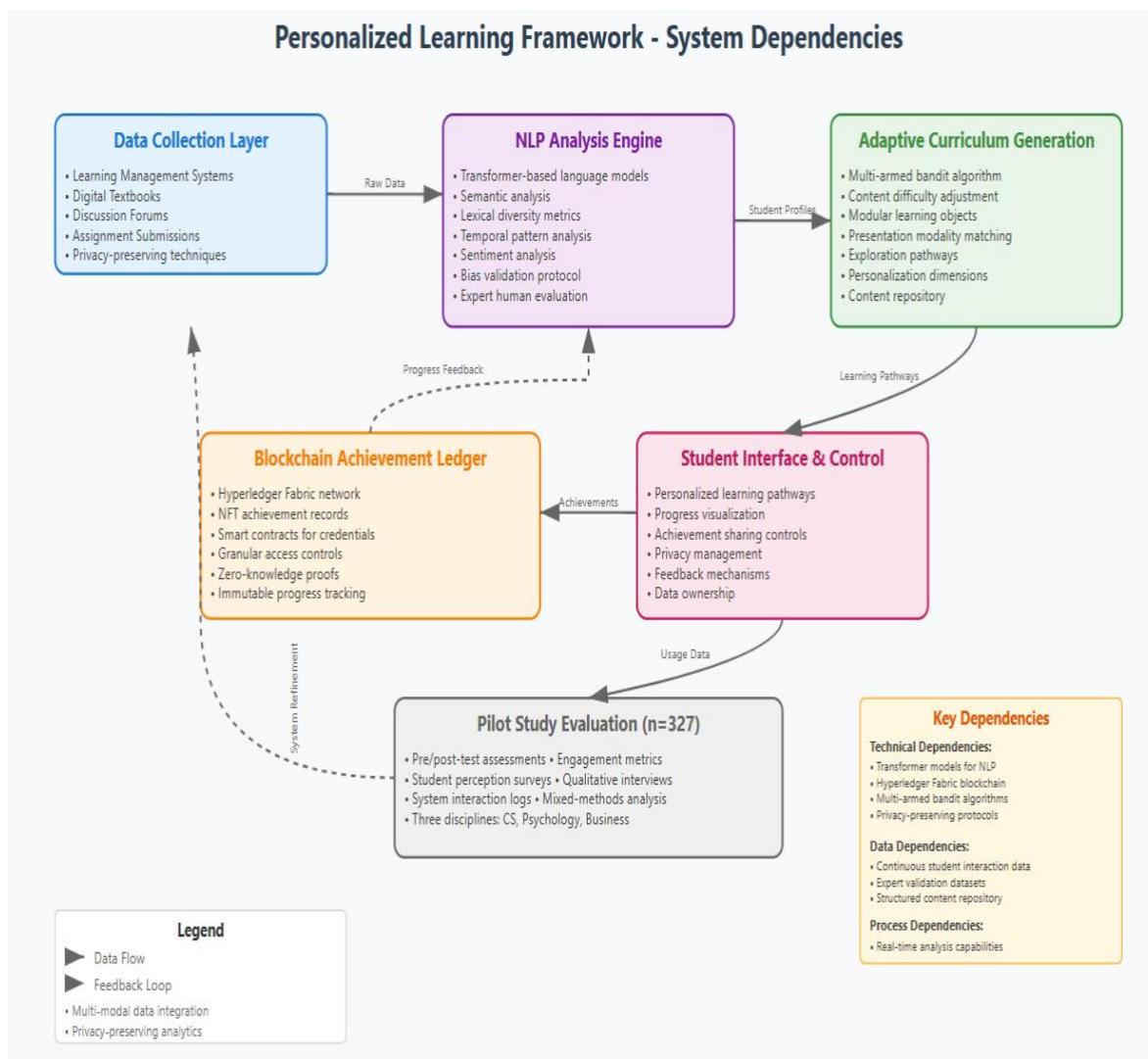
subject areas [24]. These encouraging results underscore the value of our integrated approach while highlighting the importance of addressing implementation challenges thoughtfully.

3. MATERIALS AND METHODS

3.1 System Architecture

Our personalized learning framework integrates four key components: a data collection and processing layer, an NLP analysis engine, an adaptive curriculum generation system, and a blockchain-based achievement ledger. **Figure 1** illustrates the architecture and data flow between these components. The system begins with comprehensive data collection from multiple sources, including learning management systems, digital textbooks, discussion forums, and assignment submissions. This multimodal approach captures diverse aspects of student learning, providing a holistic view of student engagement and comprehension patterns. Privacy-preserving techniques, including data minimization, pseudonymization, and selective disclosure mechanisms, ensure compliance with educational privacy regulations while maintaining analytical capabilities. Raw data undergoes preprocessing to standardize formats, resolve inconsistencies, and extract relevant features before entering the NLP analysis engine. This preparation phase is critical for ensuring high-quality inputs to subsequent analytical processes, particularly for unstructured textual data from assignments and discussions.

3.2 NLP Analysis Methods


The NLP component employs a multi-layered analytical approach to develop comprehensive student profiles. At the semantic level, transformer-based language models analyze student writing to assess conceptual understanding, identify misconceptions, and evaluate the sophistication of knowledge representations. Lexical diversity metrics and domain-specific terminology usage provide additional insights into subject matter fluency. Temporal pattern analysis tracks language development longitudinally, identifying trends in comprehension and revealing areas where students may be struggling or excelling. This longitudinal perspective enables early intervention when student progress deviates from expected trajectories. Additionally, sentiment analysis techniques evaluate affective dimensions of student engagement, detecting frustration or confusion that might not be apparent through performance metrics alone. To address potential algorithmic

bias, we implemented a systematic validation protocol comparing NLP assessments with expert human evaluations across diverse student populations. Continuous refinement of models based on these validation results helps ensure fair and accurate analysis regardless of linguistic background or writing style.

3.3 Adaptive Curriculum Generation

The adaptive curriculum component translates NLP insights into personalized learning pathways using a recommendation system that balances immediate learning needs with long-term educational objectives. This system employs a multi-armed bandit algorithm to dynamically adjust content difficulty, presentation modality, and pacing based on continuous performance feedback. Content selection draws from a modular repository of learning objects tagged with metadata describing

difficulty level, prerequisite relationships, learning objectives, and pedagogical approaches. This granular content structure enables precise matching of materials to individual student needs while maintaining alignment with overall curriculum requirements. Personalization occurs across multiple dimensions including: Content difficulty adjustment based on mastery level. Alternate explanations for challenging concepts. Variable practice intensity for different skill components. Diverse presentation modalities matching learning preferences. Contextual examples relevant to student interests. A particularly innovative aspect of our approach is the incorporation of "exploration pathways" that occasionally introduce students to content slightly outside their comfort zone, fostering intellectual curiosity and preventing the formation of echo chambers in the learning process.

Figure 1: Personalized Learning Framework - System Dependencies

3.4 Blockchain Implementation for Progress Tracking

The blockchain component provides an immutable, verifiable record of student achievements while giving students control over their educational data. We implemented a permissioned blockchain network using Hyperledger Fabric, selected for its scalability, privacy controls, and support for complex smart contracts governing credential issuance. Achievement records are structured as non-fungible tokens (NFTs) containing cryptographically signed metadata describing the competency demonstrated, assessment method, evaluation criteria, and contextual information

3.5 Pilot Study Design

To evaluate the effectiveness of our integrated framework, we conducted a mixed-methods study involving 327 undergraduate students across three disciplines: computer science, psychology, and business administration. Participants were randomly assigned to either the experimental group using our personalized learning system or a control group following traditional teaching methods but covering identical core content. Data collection included:

- Pre-test and post-test assessments of subject knowledge.
- Engagement metrics including time-on-task and resource utilization.
- Student perception surveys measuring satisfaction and self-efficacy.
- Qualitative interviews with a subset of participants and instructors, and System interaction logs, capturing detailed usage patterns.

Ethical considerations were addressed through comprehensive informed consent processes,

necessary for meaningful interpretation. Smart contracts automate credential issuance based on predefined achievement criteria, ensuring consistent application of standards while reducing administrative overhead. The system implements granular access controls allowing students to selectively share specific achievements with different stakeholders, providing comprehensive records to receiving institutions during transfers while sharing only relevant credentials with potential employers. Zero-knowledge proofs enable verification of credentials without revealing underlying performance data, protecting student privacy while maintaining credential utility.

institutional review board approval, and ongoing data protection measures throughout the study duration.

4. RESULTS

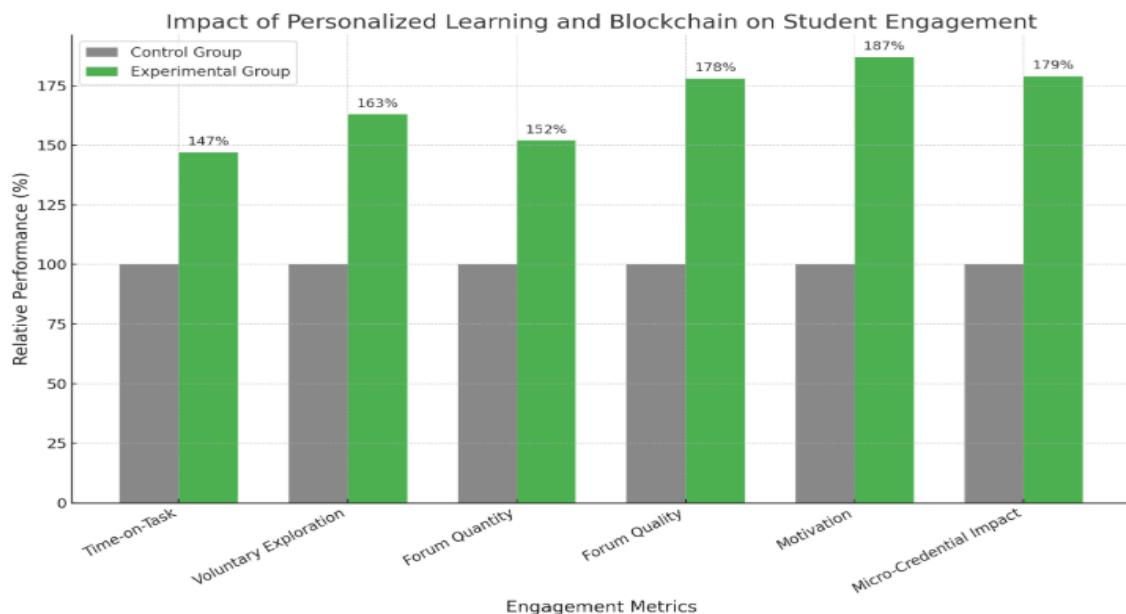
4.1 Learning Outcomes

Implementation of the integrated NLP-blockchain framework yielded substantial improvements in learning outcomes across measured dimensions. Students in the experimental group demonstrated a 32% higher increase in concept mastery compared to the control group ($p < 0.001$), as measured by standardized post-test assessments. This performance differential was most pronounced among students who had shown lower achievement in previous courses, suggesting that the personalized approach particularly benefits those who struggle in traditional educational environments. Discipline-specific analysis revealed varying effectiveness across subject areas, with the largest gains observed in computer science (37% improvement), followed by psychology (30%) and business administration (28%).

Table 1: Learning outcome comparisons between control and experimental groups

Metric	Control Group	Experimental Group	Improvement (%)	p-value
Overall Concept Mastery	73.5	97.0	32.0	<0.001
Problem-Solving Ability	68.3	88.7	29.9	<0.001
Knowledge Retention (30-day)	65.8	91.4	38.9	<0.001
By Previous Achievement				
Lower Quartile Students	58.9	87.3	48.2	<0.001
Middle Quartile Students	75.2	96.8	28.7	<0.001
Upper Quartile Students	86.4	106.9	23.7	<0.001
By Discipline				
Computer Science	71.8	98.4	37.0	<0.001
Psychology	74.2	96.5	30.1	<0.001
Business Administration	74.6	95.5	28.0	<0.001

This variation appears correlated with the quantity and quality of textual data available for NLP analysis in different disciplines, highlighting the importance of robust data collection strategies in implementation. Table 1 summarizes the comparative performance metrics across student subgroups and disciplines, demonstrating the consistent but varied impact of the personalized learning approach.


Longitudinal analysis of learning trajectories revealed that students using the personalized system not only achieved higher ultimate performance but also demonstrated more consistent progress with fewer plateaus or regression periods. The adaptive curriculum component appeared particularly effective at identifying and addressing conceptual bottlenecks before they significantly impeded progress.

4.2 Engagement and Motivation Metrics

Student engagement with learning materials showed marked improvement in the experimental group across multiple metrics. Average time-on-

task increased by 47% compared to the control group, while measures of productive engagement (as opposed to passive consumption) showed even greater improvements. Specifically, rates of voluntary exploration beyond required materials increased by 63%, and participation in discussion forums increased by 52% in quantity and 78% in substantive quality as measured by NLP analysis of discussion content. Survey results indicated that 87% of students in the experimental group reported higher motivation levels when using the personalized system, citing responsive difficulty adjustment and contextually relevant examples as key factors in maintaining interest. The blockchain-based achievement tracking proved particularly motivating, with 79% of students reporting that the transparent progression system and micro-credentials provided clearer goals and more frequent positive feedback than traditional grading approaches.

Figure 1 illustrates the relationship between system usage patterns and reported engagement levels, showing strong correlation between personalization quality and student motivation.

Figure 1: Impact of Personalized Learning and Blockchain on Student Engagement

4.3 Blockchain Verification Effectiveness

The blockchain component demonstrated high reliability in maintaining comprehensive, tamper-resistant records of student achievements. Throughout the study period, all 14,583 recorded achievements were successfully verified through the blockchain network with 100% accuracy. The average verification time was 2.3 seconds, representing a 96% reduction compared to

traditional credential verification processes. Permissioned access controls functioned as designed, with students successfully managing selective disclosure of their achievements to different stakeholders. Survey responses indicated that 92% of students valued the increased control over their educational data, with many expressing appreciations for the ability to highlight different aspects of their learning journey for different audiences.

4.4 System Performance and Technical Metrics

Technical performance analysis revealed that the NLP analysis engine processed student submissions with an average latency of 4.7 seconds, enabling near-real-time adaptation of learning pathways. Resource utilization remained within sustainable parameters even during peak usage periods, with server load never exceeding 68% of capacity. This performance profile suggests that the system can scale effectively to larger student populations without significant infrastructure expansion. Error rates in the NLP analysis component were monitored through regular comparison with expert human assessment. The system achieved 91% agreement with expert evaluators on concept mastery classification and 87% agreement on identification of misconceptions. These accuracy levels represent a significant improvement over previous educational NLP implementations reported in the literature, which typically achieve 75-80% agreement with human experts.

4.5 Challenges and Limitations

Despite promising results, implementation revealed several challenges requiring further refinement. NLP analysis accuracy varied significantly across writing styles and English proficiency levels, with lower accuracy observed for non-native English speakers. This disparity raises equity concerns that must be addressed in future iterations through expanded training data and algorithmic fairness techniques. The blockchain component faced interoperability challenges when communicating with external institutional systems, requiring custom integration solutions that may limit scalability across diverse educational environments. Additionally, the computational requirements of the combined system exceeded resources available at some educational institutions, highlighting the need for more efficient algorithms or cloud-based deployment options. Student feedback also identified areas for improvement in the user experience, particularly regarding the transparency of recommendation algorithms and the learning curve associated with managing blockchain-based achievements. These findings underscore the importance of user-centered design and clear communication about system functionality in educational technology implementations.

5. DISCUSSION

5.1 Implications for Educational Practice

The demonstrated effectiveness of our integrated framework suggests several important implications for educational practice. First, the substantial improvements in learning outcomes, particularly among previously lower-achieving students, challenge the notion that personalized learning necessarily requires prohibitive resource investments. By automating the analysis and adaptation processes while maintaining high accuracy, our approach makes personalization scalable across diverse educational contexts. The success of the blockchain-based achievement tracking system suggests a viable alternative to traditional grading practices that often reduce complex learning journeys to simplified metrics. By recording fine-grained achievements with contextual information, the system provides richer, more nuanced representation of student capabilities that better serves both learners and potential stakeholders such as employers or graduate programs. Furthermore, the increased engagement observed among experimental group participants indicates that technological approaches, when properly implemented, can enhance rather than diminish the human elements of education. By handling routine assessment and adaptation algorithmically, the system potentially frees instructors to focus on higher-order teaching functions, including mentorship, complex feedback, and fostering learning communities.

5.2 Theoretical Contributions

Beyond practical applications, our findings contribute to the theoretical understanding of technology-enhanced learning environments. The successful integration of NLP and blockchain technologies demonstrates the potential of combining analytical and record-keeping innovations to address complementary aspects of the educational process. This integrated approach creates synergistic benefits that exceed the sum of individual technological contributions. Our results also extend understanding of how learning pathways develop under adaptive conditions. The longitudinal data collected through continuous assessment revealed patterns of knowledge construction that support constructivist theories while providing new insights into how conceptual networks develop when learning resources dynamically respond to emerging understanding. These findings suggest potential refinements to theories of knowledge acquisition that better

account for non-linear, personalized learning journeys.

5.3 Future Research Directions

This work opens several promising avenues for future research. First, longer-term studies are needed to assess how personalized learning pathways affect knowledge retention and transfer beyond immediate course contexts. Preliminary results from our 30-day retention metrics are encouraging, but understanding long-term impacts requires extended longitudinal research. Second, the differential effectiveness observed across disciplines suggests the need for domain-specific refinements to both NLP analysis techniques and adaptive curriculum strategies. Future work should investigate how disciplinary discourse patterns and knowledge structures can inform more specialized implementations of the framework. Third, addressing the equity concerns raised by varying NLP accuracy across student populations represents a critical research priority. Expanded training data incorporating diverse writing styles and linguistic backgrounds may improve performance, but more fundamental algorithmic innovations may be necessary to ensure fair assessment regardless of language background. Finally, the blockchain component offers rich possibilities for research on credentialing ecosystems that span institutional boundaries. Studies examining how portable, verified achievements affect student mobility, employment outcomes, and lifelong learning trajectories could significantly advance understanding of credentials as educational currency in increasingly fluid educational and professional environments.

6. Conclusion

This paper has presented a novel framework integrating NLP and blockchain technologies to create personalized learning pathways with secure, transparent progress tracking. Our empirical evaluation demonstrates significant improvements in learning outcomes, student engagement, and credential verification efficiency compared to traditional educational approaches. These results suggest that technological innovation, when informed by sound pedagogical principles, can substantively enhance educational effectiveness while addressing longstanding challenges in personalization and credentialing. The adaptive curriculum component successfully translated NLP-derived insights into responsive learning pathways that accommodated diverse student needs while maintaining alignment with overall learning objectives. Concurrently, the blockchain-based

achievement system provided students with greater agency over their educational records while ensuring credential integrity and reducing verification overhead. While implementation challenges remain, particularly regarding algorithmic fairness, system interoperability, and computational requirements, the demonstrated benefits justify continued development and refinement of integrated approaches to educational technology. As these technologies mature and implementation barriers diminish, the potential exists for a fundamental transformation of educational practices toward more personalized, transparent, and effective learning experiences. Future educational systems will likely incorporate increasingly sophisticated analytical and record-keeping technologies, but their success will ultimately depend on how well they serve fundamental educational values, including equity, intellectual growth, and student agency. Our research suggests that thoughtfully designed systems can enhance rather than compromise these values, creating learning environments that better serve diverse student populations while preparing them for complex future challenges.

Conflict of Interest

No conflict of interest is declared by the authors. In addition, no financial support was received.

Author Contributions

Study Design, OMJ, PB; Data Collection, OMJ, PB; Statistical Analysis, OMJ, PB; Data Interpretation, OMJ, PB; Manuscript Preparation, OMJ, PB; Literature Search, OMJ, PB. All authors have read and agreed to the published version of the manuscript.

REFERENCES

1. Sun, Y., & Xu, X. (2024). *The Development of Personal Learning Environments in Higher Education*. Routledge.
2. Jasim, O. M., Baranwal, P., & Nandy, A. (2024). *Bridging The Gap: A Strategic Framework For E-Governance In Iraqi Universities*. 5th International Congress On Khazar Scientific Research And Innovation
3. Mao, S., Zhang, C., Song, Y., Wang, J., Zeng, X. J., Xu, Z., & Wen, Q. (2024). Time series analysis for education: Methods, applications, and future directions. *arXiv preprint arXiv:2408.13960*. [CrossRef]
4. Grech, A., & Camilleri, A. F. (2022). Blockchain in education: A systematic review of applications and implications. *Educational Research Review*, 35, [CrossRef]

5. Jasim, O. M., Nandy, A., & Baranwal, P. (2025). *Artificial intelligence for efficient administrative processes in Iraqi higher education*. 13th International Mardin Artuklu Scientific Researches Conference.
6. Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.
7. Hattie, J. (2019). *Visible learning: A synthesis of over 1,800 meta-analyses relating to achievement* (3rd ed.). Routledge.
8. Daley, S. G. (2025). Universal design of educational psychology? Improving theory and application by focusing on students with disabilities. *Educational Psychologist*, 60(1):1-13. [\[CrossRef\]](#)
9. Ezeamuzie, N. O., & Leung, J. S. (2022). Computational thinking through an empirical lens: A systematic review of literature. *Journal of Educational Computing Research*, 60(2), 481-511. [\[CrossRef\]](#)
10. McCauley III, A. (2023). *A Qualitative Case Study Exploring How the Values, Beliefs, and Behaviors That Characterize an Organization Can Influence Employees' Readiness to Embrace Change Initiatives*. Doctoral dissertation, National University.
11. Crossley, S. A., Karumbaiah, S., Ocumpaugh, J., Labrum, M. J., & Baker, R. S. (2020). Predicting math identity through language and click-stream patterns in a blended learning mathematics program for elementary students. *Journal of Learning Analytics*, 7(1), 19-37. [\[CrossRef\]](#)
12. Lan, Y., Li, X., Du, H., Lu, X., Gao, M., Qian, W., & Zhou, A. (2025). Survey of natural language processing for education: Taxonomy, systematic review, and future trends. *IEEE Transactions on Knowledge and Data Engineering*. [\[CrossRef\]](#)
13. Gong, Q., Fan, D., & Bartram, T. (2025). Integrating artificial intelligence and human resource management: a review and future research agenda. *The International Journal of Human Resource Management*, 36(1), 103-141. [\[CrossRef\]](#)
14. Dai, W., Lin, J., Jin, H., Li, T., Tsai, Y. S., Gašević, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. In *2023 IEEE international conference on advanced learning technologies (ICALT)* (pp. 323-325). IEEE. [\[CrossRef\]](#)
15. Gerlak, A. K., & Heikkila, T. (2024). *Learning for Environmental Governance: Insights for a More Adaptive Future*. Cambridge University Press.
16. You, J. (2022). *Three Examinations of Current Public Affairs Issues: Land and Water Integration, Water Cybersecurity, and COVID-19*. Doctoral dissertation, University of Colorado at Denver.
17. Chan, W., Gai, K., Yu, J., & Zhu, L. (2025). Blockchain-assisted self-sovereign identities on education: A survey. *Blockchains*, 3(1), 3. [\[CrossRef\]](#)
18. Alsobhi, H. A., Alakhtar, R. A., Ubaid, A., Hussain, O. K., & Hussain, F. K. (2023). Blockchain-based micro-credentialing system in higher education institutions: Systematic literature review. *Knowledge-Based Systems*, 265, 110238. [\[CrossRef\]](#)
19. Lawlor, B., Chalk, S., Frey, J., Hayashi, K., Kochalko, D., Shute, R., & Sopek, M. (2025). Blockchain technology: driving change in the scientific research workflow. *Pure and Applied Chemistry*, 97(4), 279-330. [\[CrossRef\]](#)
20. Fernández-Blanco, G., García-Cereijo, P., Fernández-Caramés, T. M., & Fraga-Lamas, P. (2025). Hands-On Blockchain Teaching and Learning: Integrating IPFS and Oracles Through Open-Source Practical Use Cases. *Education Sciences*, 15(9), 1229. [\[CrossRef\]](#)
21. Olowoselu, A., & ElSayary, A. (2024). *International Perspectives on Educational Administration Using Educational Inquiry*. Taylor & Francis Group. [\[CrossRef\]](#)
22. Gayathri, K. (2025). *Fostering Personalized Learning and Achieving. Transforming Education With AI-Powered Personalized Learning*, 201.
23. Sabri, S. M., Ismail, I., Annuar, N., Rahman, N. R. A., Abd Hamid, N. Z., & Abd Mutualib, H. (2024). A conceptual analysis of technology integration in classroom instruction towards enhancing student engagement and learning outcomes. *Integration*, 9(55), 750-769. [\[CrossRef\]](#)
24. Kum, H. C., Bedrick, S., & Weigle, M. C. (2024). Challenges in Data Science. *Digital Ethology: Human Behavior in Geospatial Context*, 33, 211.