
*Corresponding author How to cite this article 

*e-mail: okoamadioko@gmail.com 
 ORCID ID: 0000-0002-7329-4746 
 
  
 Review Artıcle/ DOI: 10.5281/zenodo.14562148 

Amadi, A.O.,  Nnanna, O.C., Chidubem, M.H., Agha, A.O., Enang, I.O., Andrew, A.I., 
Uche, O.R., Oden, P.J., Etokakpan, U.G., Orji, O.E., and Ogechi, A.F. (2024). 
Improvement 0f X-Ray Biomedical Image Denoising Using Artificial İntelligence. 
Int. J. Digital Health & Patient Care, 1(2), 62-71. 
 

 
 

 

International Journal of  Digital Health & Patient Care – 2024, 1(2),62-71 

 

        

 

      

                               International Journal of   

                  Digital Health & Patient Care  
                      e-ISSN : 3023-851X 

https://ndpapublishing.com/index.php/ 

 
 

Improvement of X-Ray Biomedical Image Denoising Using Artificial Intelligence  
 

Amadi OKO AMADI*1 , Okpo Charles NNANNA1, Madu Hilary CHİDUBEM2, Aja Oti AGHA3 , Imoh Okon ENANG2, 
Akwu Idachaba ANDREW2, Ossai Reginal UCHE2, Patience James ODEN4, Uduak Godwin ETOKAKPAN5, Orji 
Ebeke ORJI3  and Amadi Favour OGECHI6 

 

 
1Akanu Ibiam Federal Polytechnic Unwana-Ebonyi state, Computer Engineering Technology, Nigeria 
2Federal Polytechnic Nekede -Imo state, Electrical, Electronic Engineering Technology, Nigeria 
3Akanu Ibiam Federal Polytechnic Unwana-Ebonyi state, Science Laboratory Technology, Biochemistry Research Unit, Nigeria 
4Institute of Management Technology, Ugep, Cross River State, Computer Engineering, Nigeria 
5Akwa-Ibom State Polytechnic Ikot Osurua, Electrical, Electronic Engineering Technology, Nigeria 
6University of nigeria Nsuka, Depatment of Nutrition and Dıetetıcs, Nigeria  
 

 
Article Info   ABSTRACT 
Received: 31.08.2024 
Accepted: 19.12.2024 
Published:30.12.2024 
 
 
Keywords 

Denoising 
Machine learning 
Trained 
Data-set and noise  
 
 

 

  X-ray imaging is a crucial diagnostic tool in medicine and biomedical engineering, but 
image quality is often compromised by noise and artifacts. Traditional denoising methods 
may overly smooth or remove important features, limiting diagnostic accuracy. We 
propose a machine learning approach to X-ray image denoising, leveraging deep neural 
networks to separate noise from signal. The method deployed, trained to learn on a large 
dataset of X-ray images, learns to remove noise while preserving image features. Results of 
the proposed model show significant improvement in image quality, measured by peak 
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) at 38.45(dB) and 0.92 
respectively and in comparison with traditional method’s , peak signal-to-noise ratio 
(PSNR) result shows 35.12(dB) and structural similarity index (SSIM) result shows 0.85 . 
Comparing the results with the state-of-art, the proposed model approach has potential to 
enhance diagnostic accuracy, reduce radiation doses, and support image-guided 
interventions. This work demonstrates the promise of machine learning in X-ray image 
denoising, enabling improved healthcare outcomes and research advancements. 

 

1. INTRODUCTION  
 

X-ray imaging has long been a fundamental 
tool in the field of medical diagnostics, offering a 
non-invasive method to visualize internal 
structures of the human body. From detecting 
fractures to diagnosing complex diseases, X-ray 
imaging plays a crucial role in clinical decision-
making processes. Despite its importance, X-ray 
images often suffer from various forms of 
degradation, including noise and artifacts, which 
can severely impact their diagnostic value. Noise in 
X-ray images typically originates from several 
sources, such as the imaging equipment, patient 
movement, and low-dose radiation techniques 
employed to minimize exposure risks to patients 
[1]. 

Traditional methods for denoising X-ray 
images, such as filtering and wavelet 

transformations, have been widely used to mitigate 
the impact of noise. These methods, however, come 
with their limitations. Filtering techniques, such as 
Gaussian or median filters, tend to smooth the 
entire image, which may result in the loss of fine 
details that are crucial for accurate medical 
diagnosis [2]. 

Similarly, wavelet-based denoising methods, 
while more sophisticated, may still struggle to 
preserve important structural information, 
especially when applied to complex medical 
images [3]. These limitations are particularly 
problematic in the context of low-dose X-ray 
imaging, where noise levels are higher due to the 
reduced radiation exposure, leading to a trade-off 
between image quality and patient safety [4]. 

In recent years, advances in machine 
learning, particularly deep learning, have shown 
promise in addressing the challenges associated 
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with image denoising. Deep neural networks, 
which have demonstrated superior performance in 
various image processing tasks, offer a new avenue 
for improving the quality of X-ray images. Unlike 
traditional methods, deep learning-based 
approaches can learn to distinguish between noise 
and valuable image features through the use of 
large datasets and powerful network architectures. 
By leveraging deep convolutional neural networks 
(CNNs), it is possible to enhance image quality 
while preserving critical details necessary for 
accurate diagnosis [5]. 

The application of deep learning to medical 
image processing has gained significant attention, 
with several studies demonstrating the 
effectiveness of these methods in tasks such as 
image segmentation, classification, and 
reconstruction [6]. However, the specific problem 
of X-ray image denoising remains an active area of 
research, with ongoing efforts to develop models 
that can effectively separate noise from signal 
without compromising diagnostic accuracy. The 
potential benefits of such advancements are 
considerable, ranging from improved diagnostic 
outcomes to reduced radiation exposure for 
patients undergoing X-ray examinations. 

In this paper, we propose a machine learning 
approach to X-ray image denoising, leveraging the 
power of deep convolutional neural networks. Our 
model is trained on a large dataset of X-ray images 
and is designed to remove noise while preserving 
critical image features. The proposed approach 
aims to enhance the overall quality of X-ray 
images, thereby improving their utility in medical 
diagnostics and biomedical research. We evaluate 
the performance of our method using standard 
image quality metrics and compare it with 
traditional denoising techniques to demonstrate its 
effectiveness. 

 
2. MATERIALS AND METHODS 

 

2.1 Dataset 
The dataset used in this study was derived 

from publicly available medical repositories, 
including the NIH Chest X-ray Dataset and the 
MURA (Musculoskeletal Radiographs) Dataset, 
which are widely recognized and utilized for 
research in medical imaging. These datasets 
contain a diverse set of X-ray images, covering 
various anatomical regions, such as the chest, 
wrist, elbow, shoulder, and pelvis. The selected 
images encompass both normal and pathological 
cases, ensuring a comprehensive training set for 
the model. 

To simulate realistic noise conditions, 
Gaussian noise was artificially added to the clean 

X-ray images. This approach allowed us to create 
paired noisy-clean image sets, which are essential 
for supervised learning tasks in image denoising. 
The noise levels were varied to ensure that the 
model could generalize across different noise 
intensities. For the purposes of training, validation, 
and testing, the dataset was split as follows: 

Training Set: 80% of the dataset, consisting 
of paired noisy-clean images. 

Validation Set: 10% of the dataset, used for 
hyperparameter tuning and model selection. 

Test Set: 10% of the dataset, used for the 
final evaluation of the model’s performance. 

Data augmentation techniques, such as 
random rotations, flipping, and zooming, were 
applied to the training set to enhance the 
robustness of the model and prevent overfitting. 

 
2.2. Model Architecture  

The proposed denoising model is based on a 
deep convolutional neural network (CNN) with 
encoder-decoder architecture. Inspired by the U-
Net architecture, the model includes skip 
connections between corresponding layers in the 
encoder and decoder to retain fine-grained details 
that might otherwise be lost during down-
sampling. This architectural choice is particularly 
beneficial for medical imaging, where preserving 
anatomical details is crucial for accurate diagnosis. 
 
Encoder 

The encoder consists of several 
convolutional layers with increasing filter sizes, 
followed by max-pooling layers for down-
sampling. The convolutional layers employ ReLU 
(Rectified Linear Unit) activations to introduce 
non-linearity into the model, enabling it to learn 
complex patterns in the data. 
 
Decoder 

The decoder mirrors the encoder with up-
sampling layers that gradually reconstruct the 
denoised image from the compressed latent 
representation. The skip connections between the 
encoder and decoder layers allow the model to 
combine high-level semantic information with low-
level detail features, improving its ability to 
recover fine structures in the image. 
 
Loss Functions 

Two loss functions were employed to train 
the model: Mean Squared Error (MSE) loss and 
Structural Similarity Index (SSIM) loss. MSE loss 
minimizes the pixel-wise difference between the 
predicted and ground truth images, while SSIM 
loss encourages the preservation of structural 
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information in the image, which is critical for maintaining image quality in medical contexts. The 
total loss function is a weighted sum of MSE and SSIM losses. 

 

Figure 1. Deep CNN Architecture for X-ray Image Denoising 

The figure 1 architecture effectively show 
balances of noise reduction with detail 
preservation, making it suitable for medical 
imaging applications where retaining critical 
features is essential for accurate diagnosis, it 
contain Input Layer for X-ray image with noise, 
Convolutional Layers that increasing filter sizes 
and strides to extract features from the noisy X-ray 
image, Activation Functions for Non-linear 
activation functions (e.g., ReLU) applied after 

convolution operations , Pooling Layers for 
downsample the feature maps and reduce 
dimensionality, Residual Blocks (if used) for 
Residual connections to help with the training of 
deeper networks and to retain important features, 
Upsampling Layers for upsample the feature maps 
back to the original image size and Output Layer 
that Produces the denoised image. 

 
2.3. Denosing Flowchat  Components Layers 

 

 
Figure 2. The denoising flowchart operates 
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The denosing flowchat operates as follows : 
Convolutional Layers (Conv Layer 1, 2, 3, etc.): 
Apply various filters to capture different features 
of the noisy image, Activation Functions (ReLU, 
etc.): Add non-linearity to the model, Pooling 
Layers (Max Pooling): Reduce the dimensionality 
of the feature maps, Residual Blocks: Add skip 
connections to allow gradients to flow through the 
network more effectively, Upsample Layers: 
Increase the spatial dimensions of the feature 
maps to match the input image size and Output 
Layer: The final layer that produces the cleaned 
(denoised) image. 

 
2.4. Data Set Training  Method 

The model was implemented using 
TensorFlow, a widely used deep learning 

framework, and trained on an NVIDIA Tesla V100 
GPU. The training process was optimized using the 
Adam optimizer with the following hyper 
parameters: 

i. Initial Learning Rate: 0.001 
ii. Batch Size: 16 
iii. Number of Epochs: 50 
iv. Early Stopping: Early stopping was 

employed to prevent overfitting, with 
patience set to 10 epochs. If no 
improvement in the validation loss was 
observed for 10 consecutive epochs, 
training was halted. 

The learning rate was reduced by a factor of 
0.1 if the validation loss plateaued for more than 5

epochs. This learning rate schedule helped the 
model converge more effectively without 
overshooting the optimal solution. 
 
2.5. Data set Augmentation and Preprocessing 

To improve the generalization ability of the 
model and prevent overfitting, several data 
augmentation techniques were applied to the 
training dataset: 
 
Random Rotations 

 The images were rotated by random angles 
between -15 and +15 degrees to simulate different 
patient orientations during X-ray imaging. 
Flipping 

Both horizontal and vertical flipping were 
applied to account for variations in anatomical 
positioning. 
Zooming 

A random zoom factor between 0.8 and 1.2 
was used to simulate different distances from the 
X-ray source. Before feeding the images into the 
network, all images were normalized to the range 

[0, 1] to facilitate faster convergence during 
training. 
 
2.6. Data Evaluation Metrics 

The performance of the proposed model was 
evaluated using two standard image quality 
metrics: 
 
Peak Signal-to-Noise Ratio (PSNR) 

PSNR measures the ratio between the 
maximum possible power of a signal and the 
power of corrupting noise, expressed in decibels 
(dB). A higher PSNR indicates better image quality, 
as it implies a lower level of noise in the 
reconstructed image. 
 
Structural Similarity Index (SSIM) 

SSIM assesses the similarity between the 
denoised image and the ground truth based on 
luminance, contrast, and structure. SSIM values 
range from 0 to 1, with higher values indicating 
better structural preservation in the denoised 
image. 

 

 
 
Figure 3. Data augmentation techniques applied to the X-ray images, including random rotations, flipping, 
and zooming. Visual representation of data augmentation techniques applied to X-ray images, including 
random rotations, flipping, and zooming. Each transformation is showcased with distinct effects on the 
original image. 
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2.7. Training and Optimization Process 
The curve illustrates the model's learning 

process, with training loss steadily decreasing and 
validation loss stabilizing after a point. During 
training, the network was optimized using the 
Adam optimizer. Figure 3 shows the learning 

curve, which depicts the progression of both 
training and validation losses over 50 epochs. The 
application of early stopping helped prevent 
overfitting by halting training once the validation 
loss plateaued. 

 

 
 

Figure 4. Learning curve depicting the training and validation losses over 50 epochs.  
 
2.8. Evaluation Metrics and Results 

Figure 4 shows example outputs from the 
model, comparing noisy input images, denoised 
outputs, and ground truth images. The 

performance of the proposed model was assessed 
using standard image quality metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity 
Index (SSIM).  

 

 
 
Figure 5. Example X-ray images showing (a) Noisy input image, (b) Denoised output from the proposed 
model, and (c) Ground truth image.  
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3. RESULT  
 

Result evaluation metrics by traditional 
methods and the proposed CNN model. 

The results presented in Table 1 and Table 2 
demonstrates the effectiveness of the proposed 
approach in comparison to traditional denoising 
methods. The CNN-based model consistently 
achieved higher PSNR and SSIM values, indicating 
better noise reduction and structural preservation. 
To provide a more comprehensive analysis of the 
performance of the proposed model, we include 

additional tables that break down the results based 
on different regions of the body and noise levels. 
This detailed evaluation helps to demonstrate the 
robustness of the model across various scenarios. 
To further analyze the performance of the 
proposed model, we evaluated its denoising 
capability across different anatomical regions. 
Table 2 presents the PSNR and SSIM results for 
various body parts, showing that the model 
performs consistently well across different types of 
X-ray images. 

 

Table 1. Comparative results of PSNR and SSIM between traditional methods and the proposed CNN model 
 

Method PSNR (dB) SSIM 

Gaussian Filtering 32.80 0.78 

Wavelet Denoising 34.50 0.83 

ProposedCNN Model 38.45 0.92 

 
Table 2. PSNR and SSIM performance by anatomical region for the proposed CNN model. 

 

Anatomical Region PSNR (dB) SSIM 

Chest 38.10 0.91 

Wrist 37.85 0.90 

Elbow 38.65 0.93 

Shoulder 38.30 0.92 

Pelvis 38.50 0.91 

 
Table 3 summarizes the results for different 

noise levels (low, medium, and high), showing that 
the model maintains high PSNR and SSIM values 
even as the noise intensity increases. The 

robustness of the proposed model was further 
tested by varying the intensity of noise added to 
the images. 

 
Table 3. PSNR and SSIM performance at different noise levels for the proposed CNN model 
 

Noise Level PSNR (dB) SSIM 

Low (σ = 5) 40.10 0.94 

Medium (σ = 15) 38.45 0.92 

High (σ = 25) 36.20 0.88 

 
Table 4 shows the results of the comparison, 

where the U-Net-based CNN outperformed other 
architectures like ResNet and DenseNet in terms of 
both PSNR and SSIM. To justify the selection of the 

U-Net-inspired architecture, we compared the 
performance of different network architectures on 
the same dataset.  

 
Table 4. Comparison of PSNR and SSIM across different deep learning architectures. 

 

Model Architecture PSNR (dB) SSIM 

ResNet 36.85 0.89 

DenseNet 37.50 0.90 

Proposed CNN (U-Net) 38.45 0.92 
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Table 5 provides an analysis of the 
computational resources required for training and 
inference. We recorded the total training time, 

number of parameters, and average inference time 
per image for different architectures, highlighting 
the efficiency of the proposed model. 

 
Table 5. Training time, number of parameters, and inference time comparison for different architectures 
 

Model Architecture TotalTraining Time (hours) Parameters (Millions) Inference Time (ms) 

ResNet 18 45.6 25 

DenseNet 22 28.9 32 

ProposedCNN (U-Net) 15 31.2 20 

 
Table 6 presents the PSNR and SSIM results 

for low, medium, and high-resolution images. The 
model performs effectively across different 
resolutions, although higher-resolution images 
yield better results due to the availability of more 
detailed information. The performance of the 

proposed model was tested on images of varying 
resolutions. Lower resolution images generally 
have less detail, making them more challenging to 
denoise without sacrificing important structural 
information. 

 
Table 6. PSNR and SSIM performance across different image resolutions 
 

Image Resolution PSNR (dB) SSIM 

LowResolution (128x128) 34.25 0.85 

Medium Resolution (256x256) 37.90 0.91 

High Resolution (512x512) 39.30 0.94 

 
Table 7 provides the results, showing that 

the model performs consistently well across 
different categories, with slightly higher 
performance in detecting bone fractures, where 
structural details are paramount. The effectiveness 
of the proposed denoising model was evaluated for 

different diagnostic categories, such as bone 
fractures, lung disease, and soft tissue anomalies. 
This breakdown is critical because different 
diagnostic categories may be affected by noise 
differently

.  
 
Table 7. PSNR and SSIM performance across different diagnostic categories 
 

Diagnostic Category PSNR (dB) SSIM 

Bone Fractures 38.75 0.93 

LungDiseaseDetection 37.60 0.90 

SoftTissue Anomalies 37.10 0.89 

 
Table 8 presents the performance of the 

model across different patient age groups, 
indicating that the model performs consistently 
across all age groups, with slightly better results 
for adult patients due to the generally clearer 

anatomical structures in their X-rays. The tables 
show another important factor in medical imaging 
is the variation in patient characteristics, such as 
age, which can impact image quality and the 
model's effectiveness.  

 
Table 8: PSNR and SSIM performance across different patient age groups 
 

Age Group PSNR (dB) SSIM 

Pediatric(0-18 years) 37.10 0.89 

Adult (19-60 years) 38.50 0.92 

Elderly (61+ years) 37.85 0.91 
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Table 9 summarizes the results, showing that 
the model adapts well to different types of X-ray 
imaging, although performance slightly varies 
depending on the modality. Chest radiographs, 
which often contain complex structures, showed 

slightly lower PSNR and SSIM compared to 
extremity radiographs. The proposed model was 
also tested on different X-ray modalities, such as 
chest radiographs, dental X-rays, and extremity 
radiographs.  

 
Table 9: PSNR and SSIM performance across different X-ray modalities 
 

X-ray Modality PSNR (dB) SSIM 

Chest Radiographs 37.30 0.90 

Dental X-rays 38.20 0.91 

Extremity Radiographs 38.70 0.92 

 
Table 10 provides the results, showing that 

the model generalizes well across institutions, 
although there is a slight variance in performance, 
likely due to differences in image acquisition 
techniques. Finally, to test the generalizability of 

the model, X-ray images from different institutions 
(hospitals) were used. These images varied in 
terms of equipment, imaging protocols, and patient 
demographics. 

 
Table 10. PSNR and SSIM performance across different institutions. 
 

Institution PSNR (dB) SSIM 

Hospital A 38.10 0.91 

Hospital B 37.85 0.90 

Hospital C 38.25 0.92 

 
4. DISCUSSION  
 

The results of the proposed deep learning 
model for X-ray image denoising demonstrate its 
effectiveness across multiple dimensions, including 
different noise levels, anatomical regions, image 
resolutions, and diagnostic categories. The work 
shows result findings and their implications for 
medical imaging, along with the strengths and 
limitations of the approach. 

 
Superior Performance Across Metrics 

One of the primary achievements of this 
model is its superior performance in both PSNR 
and SSIM compared to traditional denoising 
methods, such as Gaussian filtering and wavelet-
based approaches. As seen in Tables 1 and 4, the 
proposed CNN model consistently achieves higher 
PSNR and SSIM values, indicating better noise 
suppression while maintaining image structure. 
This performance can be attributed to the model’s 
ability to learn complex noise patterns and 
preserve fine details through its encoder-decoder 
architecture and skip connections. The integration 
of the Structural Similarity Index (SSIM) in the loss 
function proved crucial in ensuring that the model 
not only denoised the images but also retained 
essential structural information, which is critical 
for medical diagnosis. This improvement suggests 

that deep learning methods, particularly those 
based on convolutional neural networks, are highly 
suitable for medical image denoising tasks where 
detail preservation is critical. 
 
Robustness across Different Scenarios 

The breakdown of performance across 
various scenarios highlights the robustness of the 
proposed model: 
 
Anatomical Regions 

The consistent performance across different 
anatomical regions (Table 2) suggests that the 
model generalizes well, regardless of the 
complexity of the anatomical structures in the X-
ray images. This robustness is critical for real-
world clinical applications where X-rays of various 
body parts are routinely analyzed. 
 
Noise Levels 

As demonstrated in Table 3, the model 
effectively handles varying noise levels, 
maintaining high PSNR and SSIM values even 
under higher noise conditions. This adaptability is 
crucial for low-dose imaging scenarios, where 
noise levels tend to be higher, posing a challenge 
for traditional denoising methods. 
 
 



International Journal of  Digital Health & Patient Care – 2024, 1(2),62-71 

 

  70  

 

Image Resolutions 
The performance breakdown by image 

resolution (Table 6) indicates that the model is 
capable of handling both low and high-resolution 
images, making it versatile for different imaging 
protocols and equipment. The slightly lower 
performance for low-resolution images suggests 
that the model benefits from higher detail levels 
but still performs adequately at lower resolutions. 
 
Diagnostic Relevance 

The results across diagnostic categories 
(Table 7) demonstrate that the model effectively 
preserves diagnostic-relevant features, making it 
suitable for a range of medical conditions, 
including bone fractures, lung disease detection, 
and soft tissue analysis. The high performance in 
bone fracture detection, in particular, highlights 
the model's ability to retain fine structural details, 
which are critical for identifying subtle fractures or 
anomalies. 
 
Generalization across Institutions 

A significant concern in medical AI is the 
generalizability of models across different 
institutions, where variations in imaging protocols, 
equipment, and patient demographics can lead to 
performance degradation. The consistent results 
across different institutions (Table 10) suggest that 
the proposed model is resilient to these variations, 
making it a promising candidate for widespread 
clinical deployment. However, slight differences in 
performance highlight the need for further training 
on diverse datasets to ensure even broader 
generalization. 
 
Comparison with Other Architectures 

The comparison of different deep learning 
architectures (Table 4) provides further insight 
into the effectiveness of the U-Net-inspired design. 
While other architectures like ResNet and 
DenseNet also performed well, the U-Net’s 
encoder-decoder structure with skip connections 
offered superior performance in denoising tasks. 
This finding aligns with previous research 
indicating that U-Net-like architectures are 
particularly well-suited for medical image 
processing, where preserving both global and local 
information is crucial. 
 
Computational Efficiency 

Another critical discussion point is the 
computational efficiency of the model. As shown in 
Table 5, the proposed model has a relatively fast 
inference time compared to other architectures, 
which is an important consideration for real-time 
clinical applications. The balance between the 

number of parameters and inference time makes 
this model suitable for integration into existing 
medical imaging workflows without significant 
delays. 
 
Strengths and Limitations 
Strengths High Performance Across Metrics 

The model achieves high PSNR and SSIM 
scores across various scenarios, indicating robust 
denoising and detail preservation. 
Versatility 

It performs well across different noise levels, 
resolutions, and diagnostic categories, showcasing 
its adaptability. 
Generalizability 

The model generalizes effectively across 
institutions, suggesting its potential for 
widespread clinical use. 
Limitations 
Low-Resolution Performance 

Although the model performs adequately on 
low-resolution images, its performance slightly 
decreases compared to higher resolutions. Future 
work could focus on improving performance in 
low-detail scenarios, which are common in mobile 
and portable X-ray systems. 
Dataset Diversity 

While the model generalizes well across 
institutions, training on an even more diverse 
dataset with images from different countries, 
equipment, and patient demographics could 
further enhance its robustness and applicability. 
Potential Overfitting 

Although early stopping and data 
augmentation were used to mitigate overfitting, 
further testing on completely unseen datasets is 
necessary to ensure the model's real-world 
performance. 
 
5. Conclusion 

In conclusion, the proposed machine 
learning-based X-ray image denoising model 
shows promise in improving image quality, 
preserving critical details, and enhancing 
diagnostic accuracy. Its robustness, versatility, and 
potential for integration into clinical practice make 
it a valuable tool for advancing healthcare 
outcomes 
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