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  Diffusion probabilistic models (DPMs) have recently emerged as a transformative 
framework in image generation and restoration tasks, outperforming traditional 
approaches across several metrics. Their inherent capacity to iteratively denoise samples 
from Gaussian noise aligns closely with the inverse problems found in medical imaging, 
making them highly suitable for reconstruction and denoising applications. This study 
investigates the performance of a novel DPM-based pipeline, Diffusion-UNet, across three 
medical imaging modalities low-dose CT, undersampled MRI, and point-of-care 
ultrasound using two multi-institutional datasets totaling 4,200 volumetric images. 
Quantitative comparisons were made against conventional iterative reconstruction, 
Pix2Pix GAN, and transformer-based Restormer models. Diffusion-UNet achieved 
statistically significant improvements across all key image quality metrics: PSNR (42.5 dB 
vs. 38.1 dB, p < .001), SSIM (0.931), and NMSE (2.1 × 10⁻³). Moreover, the model 
demonstrated a 69.3% reduction in Fréchet Inception Distance (FID-Med), indicating 
enhanced perceptual realism. A blinded radiologist panel scored Diffusion-UNet 
reconstructions highest (κ = .84), citing better preservation of vascular structures and 
pathology-critical features. An ablation study on diffusion steps revealed that 
performance gains plateau beyond 800 steps, informing practical deployment 
configurations. While inference time is higher than CNNs (120 ms vs. 65 ms per slice), it 
remains within clinical tolerances for post-processing applications. The findings 
substantiate DPMs as not only technically superior but clinically viable solutions for high-
resolution medical image restoration, paving the way for safer, faster, and more accurate 
diagnostic imaging workflows. 

 

1. INTRODUCTION  
 

Low-dose computed tomography (CT), 
accelerated magnetic resonance imaging (MRI), and 
portable ultrasound imaging reduce radiation 
exposure, shorten scan time, and lower costs, 
respectively. However, these benefits introduce 
noise and artifacts that may obscure pathology  [1]. 

 Deep learning approaches, particularly 
convolutional neural networks (CNNs) and 
generative adversarial networks (GANs), have 
advanced image-to-image restoration [2]. Diffusion 
probabilistic models [3], have recently achieved 
outstanding performance in natural image 
generation by learning to reverse a Markovian noise 
process. Their iterative denoising process parallels 
classical inverse problems in medical imaging [4],  

motivating their evaluation in high-resolution 
reconstructions.  

Early low-dose CT and undersampled MRI 
pipelines relied on analytical filtered back-
projection (FBP) methods enhanced with 
handcrafted regularizers such as total variation 
(TV) or wavelet sparsity [5]. While effective at noise 
suppression, these approaches often produced 
staircase artifacts and blurred anatomical edges, 
with PSNR values between 32–35 dB on thoracic CT 
[6]. 

CNN-based approaches exploit local receptive 
fields to learn nonlinear image priors. Jin et al. [7], 
reported a 3.2 dB improvement over TV-
regularized FBP in low-dose CT; however, CNNs 
often oversmooth subtle textures and may obscure 
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clinically meaningful structures [8]. Furthermore, 
deterministic outputs limit uncertainty 
quantification. 

GAN-based models employ adversarial 
training to improve perceptual sharpness. Despite 
gains in SSIM [9], GANs have been reported to 
hallucinate structures, posing risks in clinical 
practice. Additionally, mode collapse and training 
instability hinder their reliability [10]. 

Vision transformer architectures, such as 
Restormer, capture global context through long-
range attention mechanisms. While successful in 
natural-image denoising [11], transformers incur 
higher computational cost and latency in medical 
imaging [12]. 

Recent work demonstrates the strong 
performance of diffusion models for medical image 
reconstruction. Chung et al. (2022) reported 41.7 
dB PSNR on low-dose chest CT surpassing GAN 
baselines while preserving micro-calcifications. 
Score-based MRI reconstruction has also shown 
significant NMSE reductions [13]. 

However, existing studies rarely incorporate 
radiologist evaluation, multi-modality performance 
or 3D volumetric reconstruction. 

This study addresses these gaps by: 
a. Benchmarking Diffusion-UNet across CT, 

MRI, and ultrasound modalities. 
b. Using multi-metric evaluation, including 

FID-Med and radiologist scoring. 
c. Analyzing inference latency and diffusion-

step ablation for clinical readiness. 
 

2. MATERIALS AND METHODS 
 
This method used experimental design, 

datasets, model architectures, AI training Protocol, 
and evaluation protocols used to assess 
Diffusion-UNet against state-of-the-art baselines in 
medical image reconstruction. 

 
2.1. Experimental Design 

Aquasi experimental, multi institutional 
benchmarking study was conducted (Table 1). Two 
publicly available datasets (CT Lung LowDose, MRI 
Knee Fast) and one IRB approved clinical 
ultrasound dataset (Echo Carotid) were split 70 
%/10 %/20 % into training, validation, and testing 
cohorts, ensuring patient level separation to avoid 
data leakage. Using the following algorithm: 
 
2.1.1. Pre-processing Stage 

Normalisation, slice resampling to 512² (or 
256² for knee MRI), and data augmentation 
(rotation ±10°, horizontal flips). 
 
2.1.2. Model Training Stage 

Baselines and Diffusion-UNet trained with 
identical augmentation and loss formulations 
where applicable. 
 
2.1.3. Evaluation Stage 

Quantitative metrics computed on the 
hold-out test set; qualitative evaluation via blinded 
radiologist scoring. 
 
2.2 Datasets and Acquisition Parameters 

Table 1. Experimental design 
 

Modality Source Cases Resolution 
Noise/ 

Undersampling 
Clinical Rationale 

Low-Dose CT 
Mayo Clinic 

Low-Dose Challenge 
2,000 

512 × 512 
× >300 slices 

25 % tube current 
Reduces radiation 

by ~75 % 

Fast MRI (Knee) NYU fastMRI 1,600 256 × 256 × 16 
6× Cartesian 
undersample 

Shortens scan time 

Carotid 
Ultrasound 

Local Hospital 600 
448 × 448 

× >200 frames 
Low SNR (–6 dB) 

Portable imaging 
in vascular clinics 

 
2.3. Baseline Architectures 
 
TV-Recon 

Filtered back-projection with total-variation 
(λ = 0.01) using Chambolle-Pock optimisation. 
Pix2Pix 

UNet generator (8-layer) with PatchGAN 
discriminator; L1 + adversarial loss. 
Restormer 

6-stage encoder–decoder with multi-Dconv 
head transposed attention (MDTA) blocks [11]. 

 
2.4. Proposed Diffusion-UNet Architecture 
 
Noise Schedule 

Linear βₜ from 1 × 10⁻⁴ to 0.02 over T = 1,000 
steps. 
UNet Backbone 

Four encoder–decoder levels with residual 
blocks, attention at 16 × down-sampled feature 
maps, and FiLM-style time-embedding. 
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Objective 
ε-prediction loss [3]. plus perceptual L₁ to 

stabilise low-frequency structure. 
Classifier-Free Guidance 

Conditional dropout 10 %; guidance 
weight = 2.0 during inference. 
 
2.5.  AI Training Protocol 

Table 2 outlines the key hyperparameters 
and methodological choices used during the 
training phase of the Diffusion-UNet across three 
imaging modalities: low-dose CT (lung), accelerated 
MRI (knee), and ultrasound (carotid 
echocardiography). Each setting was selected based 
on domain-specific performance needs and best 
practices in training deep generative models 

particularly diffusion models for medical image 
reconstruction. Early Stopping was applied: 
Training would halt if validation PSNR (Peak Signal-
to-Noise Ratio) failed to improve for 15 
consecutive epochs. This avoids overfitting and 
unnecessary computation. Model Checkpointing 
was governed by best FID-Med (Fréchet Inception 
Distance adapted for medical images). This 
prioritizes perceptual realism and radiological 
consistency over pixel-wise metrics alone. Table 2 
reflects a robust and reproducible training protocol 
optimized for clinical fidelity, computational 
efficiency, and cross-modality generalizability. 
These design decisions ensure that the 
Diffusion-UNet model is both performant and 
feasible for real-world deployment scenarios. 

 
Table 2. Training regime of CT-Lung-LowDose, MRI-Knee-Fast and Echo-Carot 
 

Hyper-parameter Value Rationale 

Optimiser 
Adam (β₁ = 0.9, 

β₂ = 0.999) 

The Adam optimiser is widely adopted in training diffusion models 
for its adaptive gradient updates. The specified beta values help 
stabilize training by controlling the momentum and variance of 
gradients (Kingma & Ba, 2014). 

Learning Rate 
2 × 10⁻⁴ with 
cosine decay 

A moderately high initial learning rate encourages rapid early 
convergence. The cosine decay schedule then gradually reduces it, 
preventing overshooting and ensuring stability in later epochs—
especially crucial in models with thousands of denoising steps. 

Epochs / Batch 
Size 

200 / 8 

These settings align with those used by baseline models (e.g., Pix2Pix 
and Restormer), enabling a fair and controlled comparison. A smaller 
batch size allows training on large 3D volumes without exceeding GPU 
memory limits. 

EMA Decay 0.999 

Exponential Moving Average (EMA) helps smooth model parameters 
during training. It improves generalization and stabilizes inference, 
which is especially important in diffusion models where small 
parameter fluctuations can cause divergent generations. 

Mixed-Precision Apex O1 

Mixed precision via NVIDIA Apex allows some computations in 
float16 instead of float32, reducing memory consumption and 
training time by up to 40%, without significant loss in accuracy. This 
is crucial when training large volumetric models like 3D UNets. 

 
2.6. Evaluation Metrics 
 
PSNR & SSIM 

 Signal fidelity and structural similarity. 
NMSE 

Relative error normalised to ground-truth 
energy. 
FID-Med 

Adapted Inception-V3 embeddings 
fine-tuned on MedImageNet. 
Radiologist Likert 

Five fellowship-trained radiologists scored 
100 random test slices; Fleiss’ κ measured 
agreement. 
 
2.7. Statistical Analysis 

Paired t-tests compared model metrics; 
significance at α = .05 with Bonferroni adjustment 

(p_adj < .0125). One-way ANOVA assessed latency 
differences. Linear regression probed correlation 
between FID-Med and radiologist scores. 

 
2.8. Methodological Limitations 

 

Hardware Variance 
Experiments on A100 GPUs; performance on 

CPU or edge devices not measured. 
Pathology Coverage 

 Limited rare-disease representation; may 
bias toward common morphologies. 
 
Temporal Consistency 

Ultrasound frame-to-frame coherence not 
explicitly enforced, warranting future 
spatio-temporal diffusion models. 
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3. RESULTS 
 
Table 3 shows that Diffusion-UNet 

significantly outperforms all baselines across four 
key metrics Peak Signal-to-Noise Ratio (PSNR), 
Structural Similarity Index Measure (SSIM), 
Normalized Mean Squared Error (NMSE), and 
Fréchet Inception Distance adapted for medical 
imaging (FID-Med). The PSNR gain of 4.4 dB over 
Restormer (p < .001) indicates improved noise 

suppression while preserving fine textures. The 
SSIM score of 0.931 confirms the model’s ability to 
reconstruct anatomical structures with high 
fidelity, while a low NMSE indicates accurate voxel-
wise intensity restoration. FID-Med, a perceptual 
similarity score, further highlights the superior 
realism of Diffusion-UNet’s outputs. These results 
suggest that diffusion models not only excel 
quantitatively but also ensure visual plausibility, 
critical for clinical settings. 

 
Table 3. Overall reconstruction quality across modalities (Mean ± SD) 
 

Model PSNR (dB) SSIM NMSE (×10⁻³) FID-Med 
TV-Recon 34.7 ± 2.1 .842 ± .03 6.1 ± 0.8 158.4 
Pix2Pix 37.2 ± 2.0 .883 ± .02 4.3 ± 0.6 94.7 
Restormer 38.1 ± 1.8 .896 ± .02 3.9 ± 0.5 81.3 
Diffusion-UNet 42.5 ± 1.5 .931 ± .01 2.1 ± 0.4 48.6 

 
Table 4 breaks down PSNR performance by 

imaging modality, confirming the robust 
generalization of Diffusion-UNet across 
heterogeneous data types. In CT, the model 
outperformed others by up to 4.5 dB, essential for 
low-dose diagnostics where noise artifacts are 
prevalent. In MRI, where k-space undersampling 

creates complex aliasing patterns, Diffusion-UNet 
restored structural coherence with a 3.8 dB gain 
over Restormer. The most notable gain is seen in 
ultrasound, a notoriously noisy modality, where 
the model achieved 42.5 dB—suggesting diffusion 
models may be particularly valuable in portable, 
real-time imaging systems. 

 
Table 4. Modality-specific PSNR improvement (dB) 
 

Modality TV-Recon Pix2Pix Restormer Diffusion-UNet 
CT 35.9 38.0 39.3 43.8 
MRI 33.8 36.5 37.4 41.2 
Ultrasound 34.2 36.9 37.7 42.5 

 
Table 5 shows that Clinical relevance is best 

gauged by expert evaluation. Radiologists gave 
Diffusion-UNet the highest Likert score (4.6/5), 
citing enhanced delineation of vasculature, organ 
boundaries, and reduced artifacts. The inter-rater 
agreement (κ = .84) demonstrates consistency 

among reviewers, strengthening the claim that 
Diffusion-UNet reconstructions are not only 
superior numerically but also clinically 
interpretable. The ability to maintain diagnostic 
integrity across cases is essential for practical 
adoption in real-world settings. 

 
Table 5. Radiologist blinded likert ratings (1–5) 
 

Model Mean Score κ (Inter-rater) 
TV-Recon 2.8 .72 
Pix2Pix 3.6 .78 
Restormer 3.9 .81 
Diffusion-UNet 4.6 .84 

 
Table 6 shows that , Although Diffusion UNet 

is slower than CNN-based methods like Pix2Pix and 
Restormer, the 120 ms per slice is well within 
acceptable clinical processing windows, especially 
for post-acquisition pipelines. Compared to 
traditional iterative reconstruction (TV-Recon, 410 

ms), it is significantly faster and more scalable. This 
highlights a trade-off between image quality and 
computational efficiency, which may be mitigated in 
future work using diffusion model distillation or 
guided sampling techniques. 
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Table 6. Inferencing time per 512² Slice (ms) 
 

Model GPU Time (ms) 
TV-Recon 410 
Pix2Pix 48 
Restormer 65 
Diffusion-UNet 120 

 
Table 7 indicates ablation examines the effect 

of denoising step count on image quality. Results 
show that PSNR increases with more steps, but 
performance plateaus beyond 800 steps. This 
insight is vital for optimizing inference speed 

without sacrificing image quality. Using ~800 steps 
could offer an efficient compromise between 
diagnostic fidelity and latency, guiding deployment 
in real-time or low-resource environments. 

 
Table 7.  Ablation study – noise step count against PSNR 
 

Steps 200 400 600 800 1000 
PSNR (dB) 39.2 40.6 41.4 42.0 42.5 

 
4. DISCUSSIONS 

 
The cross-metric superiority of Diffusion-

UNet observed in this study reinforces the 
hypothesis that iterative denoising aligns 
effectively with the inverse problems characteristic 
of medical imaging. Diffusion probabilistic models 
(DPMs) inherently learn to reverse a stochastic 
noise process, producing outputs that closely 
adhere to the underlying data distribution while 
preserving fine anatomical structures [3,4]. This 
iterative approach offers a distinct advantage over 
traditional reconstruction methods, such as filtered 
back-projection with sparsity constraints, which 
often introduce staircase artifacts or blur delicate 
features [1,5]. 

Importantly, Diffusion-UNet maintained 
diagnostically relevant textures, addressing a key 
limitation of generative adversarial networks 
(GANs), which are prone to hallucinating structures 
that may mislead clinical interpretation [9,10]. This 
fidelity is corroborated by the high radiologist 
consensus (κ = .84), indicating that the model 
outputs are not only quantitatively superior but 
also clinically interpretable. Previous work has 
shown that CNN-based denoising models, while 
improving PSNR and SSIM, can oversmooth subtle 
features, compromising diagnostic reliability  [7,8]. 
In contrast, diffusion-based approaches, including 
the DPM and score-based MRI reconstruction, 
demonstrate enhanced recovery of fine structures 
without the oversmoothing observed in CNNs or the 
instabilities associated with GANs [4,14]. 

Although Diffusion-UNet inference times are 
higher than CNN or transformer-based models, the 
observed 120 ms per 512² slice remains within 
clinically acceptable limits for post-acquisition 
workflows. Transformer-based architectures such 

as Restormer offer strong restoration capabilities 
but at increased computational cost and moderate 
PSNR gains [11,12].  The iterative denoising 
mechanism of diffusion models, while slower, yields 
higher PSNR, SSIM, and perceptual quality metrics 
[14], justifying the trade-off between latency and 
diagnostic fidelity. 

From a clinical perspective, these findings 
imply that diffusion-based reconstruction can 
enable more aggressive low-dose CT protocols, 
potentially reducing radiation exposure by 
approximately 75% without compromising image 
quality [1,6]. Similarly, in accelerated MRI, 
Diffusion-UNet can restore undersampled k-space 
acquisitions, achieving up to 6× faster scans while 
maintaining diagnostic reliability [2]. These 
outcomes highlight the potential of DPMs to 
improve patient safety, enhance workflow 
efficiency, and provide high-fidelity reconstructions 
across heterogeneous imaging modalities. 

Finally, the robustness of Diffusion-UNet 
across CT, MRI, and ultrasound datasets suggests 
promising generalizability, though further studies 
are needed to evaluate performance across rare 
pathologies and diverse scanner configurations 
[5,13]. Additionally, ongoing research into 
accelerated sampling techniques and hybrid 
architectures may further reduce inference time 
while preserving reconstruction quality [3,13]. 
Collectively, these findings underscore the clinical 
viability of diffusion-based models and their 
potential to serve as a cornerstone for next-
generation diagnostic imaging workflows. 
 
5. Conclusion 

Diffusion-based models (DPMs) have 
emerged as a transformative advancement in the 
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field of medical imaging, particularly for high-
resolution reconstruction and denoising tasks. The 
empirical evidence presented in this study 
demonstrates that DPMs consistently outperform 
conventional convolutional neural networks 
(CNNs) and transformer-based architectures across 
both quantitative metrics (such as PSNR and SSIM) 
and perceptual quality assessments. Their 
probabilistic generative framework enables more 
accurate recovery of fine anatomical structures, 
reducing artifacts and preserving clinically 
significant details that are often lost in other 
methods. The superior performance of DPMs holds 
substantial implications for clinical practice. By 
facilitating the reconstruction of high-quality 
images from low-dose or accelerated scans, DPMs 
can enable safer imaging protocols such as reducing 
patient exposure to ionizing radiation in CT and PET 
scans or shortening scan times in MRI without 
compromising diagnostic quality. Moreover, their 
robust denoising capabilities support more reliable 
interpretation in challenging cases with suboptimal 
input data. These advantages position DPMs as a 
cornerstone for next-generation diagnostic imaging 
workflows. Their integration into real-time clinical 
applications could lead to more efficient resource 
utilization, improved diagnostic accuracy, and 
better patient outcomes. Continued research into 
model optimization, interpretability, and hardware 
deployment will be essential to fully realize the 
clinical translation of these powerful generative 
model 
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