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1. INTRODUCTION

Low-dose computed

Diffusion probabilistic models (DPMs) have recently emerged as a transformative
framework in image generation and restoration tasks, outperforming traditional
approaches across several metrics. Their inherent capacity to iteratively denoise samples
from Gaussian noise aligns closely with the inverse problems found in medical imaging,
making them highly suitable for reconstruction and denoising applications. This study
investigates the performance of a novel DPM-based pipeline, Diffusion-UNet, across three
medical imaging modalities low-dose CT, undersampled MRI, and point-of-care
ultrasound using two multi-institutional datasets totaling 4,200 volumetric images.
Quantitative comparisons were made against conventional iterative reconstruction,
Pix2Pix GAN, and transformer-based Restormer models. Diffusion-UNet achieved
statistically significant improvements across all key image quality metrics: PSNR (42.5 dB
vs. 38.1dB, p<.001), SSIM (0.931), and NMSE (2.1 x1073). Moreover, the model
demonstrated a 69.3% reduction in Fréchet Inception Distance (FID-Med), indicating
enhanced perceptual realism. A blinded radiologist panel scored Diffusion-UNet
reconstructions highest (k =.84), citing better preservation of vascular structures and
pathology-critical features. An ablation study on diffusion steps revealed that
performance gains plateau beyond 800 steps, informing practical deployment
configurations. While inference time is higher than CNNs (120 ms vs. 65 ms per slice), it
remains within clinical tolerances for post-processing applications. The findings
substantiate DPMs as not only technically superior but clinically viable solutions for high-
resolution medical image restoration, paving the way for safer, faster, and more accurate
diagnostic imaging workflows.

tomography (CT),

motivating their evaluation in high-resolution
reconstructions.
Early low-dose CT and undersampled MRI

accelerated magnetic resonance imaging (MRI), and
portable ultrasound imaging reduce radiation
exposure, shorten scan time, and lower costs,
respectively. However, these benefits introduce
noise and artifacts that may obscure pathology [1].

Deep learning approaches, particularly
convolutional neural networks (CNNs) and
generative adversarial networks (GANs), have
advanced image-to-image restoration [2]. Diffusion
probabilistic models [3], have recently achieved
outstanding performance in natural image
generation by learning to reverse a Markovian noise
process. Their iterative denoising process parallels
classical inverse problems in medical imaging [4],

pipelines relied on analytical filtered back-
projection (FBP) methods enhanced with
handcrafted regularizers such as total variation
(TV) or wavelet sparsity [5]. While effective at noise
suppression, these approaches often produced
staircase artifacts and blurred anatomical edges,
with PSNR values between 32-35 dB on thoracic CT
[6].

CNN-based approaches exploit local receptive
fields to learn nonlinear image priors. Jin et al. [7],
reported a 3.2 dB improvement over TV-
regularized FBP in low-dose CT; however, CNNs
often oversmooth subtle textures and may obscure
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clinically meaningful structures [8]. Furthermore,

deterministic outputs limit uncertainty
quantification.
GAN-based models employ adversarial

training to improve perceptual sharpness. Despite
gains in SSIM [9], GANs have been reported to
hallucinate structures, posing risks in clinical
practice. Additionally, mode collapse and training
instability hinder their reliability [10].

Vision transformer architectures, such as
Restormer, capture global context through long-
range attention mechanisms. While successful in
natural-image denoising [11], transformers incur
higher computational cost and latency in medical
imaging [12].

Recent work demonstrates the strong
performance of diffusion models for medical image
reconstruction. Chung et al. (2022) reported 41.7
dB PSNR on low-dose chest CT surpassing GAN
baselines while preserving micro-calcifications.
Score-based MRI reconstruction has also shown
significant NMSE reductions [13].

However, existing studies rarely incorporate
radiologist evaluation, multi-modality performance
or 3D volumetric reconstruction.

This study addresses these gaps by:

a. Benchmarking Diffusion-UNet across CT,
MRI, and ultrasound modalities.

b. Using multi-metric evaluation, including
FID-Med and radiologist scoring.

c. Analyzing inference latency and diffusion-
step ablation for clinical readiness.

Table 1. Experimental design

2. MATERIALS AND METHODS

This method used experimental design,
datasets, model architectures, Al training Protocol,
and evaluation protocols used to assess
Diffusion-UNet against state-of-the-art baselines in
medical image reconstruction.

2.1. Experimental Design

Aquasi experimental, multi institutional
benchmarking study was conducted (Table 1). Two
publicly available datasets (CT Lung LowDose, MRI
Knee Fast) and one IRB approved clinical
ultrasound dataset (Echo Carotid) were split 70
%/10 %/20 % into training, validation, and testing
cohorts, ensuring patient level separation to avoid
data leakage. Using the following algorithm:

2.1.1. Pre-processing Stage

Normalisation, slice resampling to 5122 (or
256% for knee MRI), and data augmentation
(rotation *10°, horizontal flips).

2.1.2. Model Training Stage

Baselines and Diffusion-UNet trained with
identical augmentation and loss formulations
where applicable.

2.1.3. Evaluation Stage

Quantitative metrics computed on the
hold-out test set; qualitative evaluation via blinded
radiologist scoring.

2.2 Datasets and Acquisition Parameters

Modality Source Cases Resolution Noise/ . Clinical Rationale
Undersampling

Mayo Clinic 512 x 512 0 Reduces radiation
Low-Dose CT Low-Dose Challenge 2,000 x >300 slices 25 % tube current by ~75 %
Fast MRI (Knee) NYU fastMRI 1,600 256 x 256 x 16 bx Cartesian ¢ 4 o6 scan time

undersample

Carotid . 448 x 448 Portable imaging
Ultrasound Local Hospital 600 x >200 frames Low SNR (-6 dB) in vascular clinics

2.3. Baseline Architectures

TV-Recon

Filtered back-projection with total-variation
(A=10.01) using Chambolle-Pock optimisation.
Pix2Pix

UNet generator (8-layer) with PatchGAN
discriminator; L1 + adversarial loss.
Restormer

6-stage encoder-decoder with multi-Dconv
head transposed attention (MDTA) blocks [11].

2.4. Proposed Diffusion-UNet Architecture

Noise Schedule

Linear f from 1 x 107 to 0.02 over T =1,000
steps.
UNet Backbone

Four encoder-decoder levels with residual
blocks, attention at 16 x down-sampled feature
maps, and FiLM-style time-embedding.
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Objective
e-prediction loss [3]. plus perceptual L; to
stabilise low-frequency structure.
Classifier-Free Guidance
Conditional  dropout
weight = 2.0 during inference.

10 %;  guidance

2.5. Al Training Protocol

Table 2 outlines the key hyperparameters
and methodological choices used during the
training phase of the Diffusion-UNet across three
imaging modalities: low-dose CT (lung), accelerated
MRI (knee), and ultrasound (carotid
echocardiography). Each setting was selected based
on domain-specific performance needs and best
practices in training deep generative models

particularly diffusion models for medical image
reconstruction. Early Stopping was applied:
Training would halt if validation PSNR (Peak Signal-
to-Noise Ratio) failed to improve for 15
consecutive epochs. This avoids overfitting and
unnecessary computation. Model Checkpointing
was governed by best FID-Med (Fréchet Inception
Distance adapted for medical images). This
prioritizes perceptual realism and radiological
consistency over pixel-wise metrics alone. Table 2
reflects a robust and reproducible training protocol
optimized for clinical fidelity, computational
efficiency, and cross-modality generalizability.
These design decisions ensure that the
Diffusion-UNet model is both performant and
feasible for real-world deployment scenarios.

Table 2. Training regime of CT-Lung-LowDose, MRI-Knee-Fast and Echo-Carot

Rationale

The Adam optimiser is widely adopted in training diffusion models
for its adaptive gradient updates. The specified beta values help
stabilize training by controlling the momentum and variance of
gradients (Kingma & Ba, 2014).

Hyper-parameter Value
. Adam (1 =0.9,
Optimiser 8, = 0.999)
2 x 107* with

Learning Rate .
cosine decay

A moderately high initial learning rate encourages rapid early
convergence. The cosine decay schedule then gradually reduces it,
preventing overshooting and ensuring stability in later epochs—
especially crucial in models with thousands of denoising steps.

These settings align with those used by baseline models (e.g, Pix2Pix
and Restormer), enabling a fair and controlled comparison. A smaller
batch size allows training on large 3D volumes without exceeding GPU

Exponential Moving Average (EMA) helps smooth model parameters
during training. It improves generalization and stabilizes inference,
which is especially important in diffusion models where small
parameter fluctuations can cause divergent generations.

Mixed precision via NVIDIA Apex allows some computations in
float16 instead of float32, reducing memory consumption and

Epochs / Batch 200/8
Size
memory limits.
EMA Decay 0.999
Mixed-Precision Apex 01

training time by up to 40%, without significant loss in accuracy. This
is crucial when training large volumetric models like 3D UNets.

2.6. Evaluation Metrics

(p_adj <.0125). One-way ANOVA assessed latency
differences. Linear regression probed correlation

between FID-Med and radiologist scores.
2.8. Methodological Limitations

Hardware Variance

PSNR & SSIM

Signal fidelity and structural similarity.
NMSE

Relative error normalised to ground-truth
energy.
FID-Med

Adapted Inception-V3 embeddings
fine-tuned on MedImageNet.
Radiologist Likert

Five fellowship-trained radiologists scored
100 random test slices; Fleiss’ k measured
agreement.

2.7. Statistical Analysis
Paired t-tests compared model metrics;
significance at a =.05 with Bonferroni adjustment
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Experiments on A100 GPUs; performance on
CPU or edge devices not measured.
Pathology Coverage

Limited rare-disease representation; may
bias toward common morphologies.

Temporal Consistency

Ultrasound frame-to-frame coherence not
explicitly enforced, warranting future
spatio-temporal diffusion models.
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3. RESULTS

Table 3 shows that Diffusion-UNet
significantly outperforms all baselines across four
key metrics Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM),
Normalized Mean Squared Error (NMSE), and
Fréchet Inception Distance adapted for medical
imaging (FID-Med). The PSNR gain of 4.4 dB over
Restormer (p < .001) indicates improved noise

suppression while preserving fine textures. The
SSIM score of 0.931 confirms the model’s ability to
reconstruct anatomical structures with high
fidelity, while a low NMSE indicates accurate voxel-
wise intensity restoration. FID-Med, a perceptual
similarity score, further highlights the superior
realism of Diffusion-UNet’s outputs. These results
suggest that diffusion models not only excel
quantitatively but also ensure visual plausibility,
critical for clinical settings.

Table 3. Overall reconstruction quality across modalities (Mean * SD)

Model PSNR (dB) SSIM NMSE (x1073) FID-Med
TV-Recon 34.7+2.1 .842 +£.03 6.1+0.8 158.4
Pix2Pix 37.2+2.0 .883 +£.02 43+0.6 94.7
Restormer 38.1+1.8 .896 +.02 3.9+0.5 81.3
Diffusion-UNet 42515 931+.01 211204 48.6

Table 4 breaks down PSNR performance by
imaging modality, confirming the robust
generalization of Diffusion-UNet across
heterogeneous data types. In CT, the model
outperformed others by up to 4.5 dB, essential for
low-dose diagnostics where noise artifacts are
prevalent. In MRI, where k-space undersampling

creates complex aliasing patterns, Diffusion-UNet
restored structural coherence with a 3.8 dB gain
over Restormer. The most notable gain is seen in
ultrasound, a notoriously noisy modality, where
the model achieved 42.5 dB—suggesting diffusion
models may be particularly valuable in portable,
real-time imaging systems.

Table 4. Modality-specific PSNR improvement (dB)

Modality TV-Recon Pix2Pix Restormer Diffusion-UNet
CT 35.9 38.0 39.3 43.8
MRI 33.8 36.5 37.4 41.2
Ultrasound 34.2 36.9 37.7 42.5

Table 5 shows that Clinical relevance is best
gauged by expert evaluation. Radiologists gave
Diffusion-UNet the highest Likert score (4.6/5),
citing enhanced delineation of vasculature, organ
boundaries, and reduced artifacts. The inter-rater
agreement (k = .84) demonstrates consistency

Table 5. Radiologist blinded likert ratings (1-5)

among reviewers, strengthening the claim that
Diffusion-UNet reconstructions are not only
superior numerically but also clinically
interpretable. The ability to maintain diagnostic
integrity across cases is essential for practical
adoption in real-world settings.

Model Mean Score K (Inter-rater)
TV-Recon 2.8 72
Pix2Pix 3.6 .78
Restormer 3.9 .81
Diffusion-UNet 4.6 .84

Table 6 shows that, Although Diffusion UNet
is slower than CNN-based methods like Pix2Pix and
Restormer, the 120 ms per slice is well within
acceptable clinical processing windows, especially
for post-acquisition pipelines. Compared to
traditional iterative reconstruction (TV-Recon, 410

ms), it is significantly faster and more scalable. This
highlights a trade-off between image quality and
computational efficiency, which may be mitigated in
future work using diffusion model distillation or
guided sampling techniques.
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Table 6. Inferencing time per 5122 Slice (ms)

Model GPU Time (ms)
TV-Recon 410
Pix2Pix 48
Restormer 65
Diffusion-UNet 120

Table 7 indicates ablation examines the effect
of denoising step count on image quality. Results
show that PSNR increases with more steps, but
performance plateaus beyond 800 steps. This
insight is vital for optimizing inference speed

Table 7. Ablation study - noise step count against PSNR

without sacrificing image quality. Using ~800 steps
could offer an efficient compromise between
diagnostic fidelity and latency, guiding deployment
in real-time or low-resource environments.

Steps 200 400

600 800 1000

PSNR (dB) 39.2 40.6

41.4 42.0 42.5

4. DISCUSSIONS

The cross-metric superiority of Diffusion-
UNet observed in this study reinforces the
hypothesis that iterative denoising aligns
effectively with the inverse problems characteristic
of medical imaging. Diffusion probabilistic models
(DPMs) inherently learn to reverse a stochastic
noise process, producing outputs that closely
adhere to the underlying data distribution while
preserving fine anatomical structures [3,4]. This
iterative approach offers a distinct advantage over
traditional reconstruction methods, such as filtered
back-projection with sparsity constraints, which
often introduce staircase artifacts or blur delicate
features [1,5].

Importantly, Diffusion-UNet maintained
diagnostically relevant textures, addressing a key
limitation of generative adversarial networks
(GANSs), which are prone to hallucinating structures
that may mislead clinical interpretation [9,10]. This
fidelity is corroborated by the high radiologist
consensus (k = .84), indicating that the model
outputs are not only quantitatively superior but
also clinically interpretable. Previous work has
shown that CNN-based denoising models, while
improving PSNR and SSIM, can oversmooth subtle
features, compromising diagnostic reliability [7.8].
In contrast, diffusion-based approaches, including
the DPM and score-based MRI reconstruction,
demonstrate enhanced recovery of fine structures
without the oversmoothing observed in CNNs or the
instabilities associated with GANs [4,14].

Although Diffusion-UNet inference times are
higher than CNN or transformer-based models, the
observed 120 ms per 5122 slice remains within
clinically acceptable limits for post-acquisition
workflows. Transformer-based architectures such

as Restormer offer strong restoration capabilities
but at increased computational cost and moderate
PSNR gains [11,12]. The iterative denoising
mechanism of diffusion models, while slower, yields
higher PSNR, SSIM, and perceptual quality metrics
[14], justifying the trade-off between latency and
diagnostic fidelity.

From a clinical perspective, these findings
imply that diffusion-based reconstruction can
enable more aggressive low-dose CT protocols,
potentially reducing radiation exposure by
approximately 75% without compromising image
quality [1,6]. Similarly, in accelerated MRI,
Diffusion-UNet can restore undersampled k-space
acquisitions, achieving up to 6x faster scans while
maintaining diagnostic reliability [2]. These
outcomes highlight the potential of DPMs to
improve patient safety, enhance workflow
efficiency, and provide high-fidelity reconstructions
across heterogeneous imaging modalities.

Finally, the robustness of Diffusion-UNet
across CT, MRI, and ultrasound datasets suggests
promising generalizability, though further studies
are needed to evaluate performance across rare
pathologies and diverse scanner configurations
[5,13]. Additionally, ongoing research into
accelerated sampling techniques and hybrid
architectures may further reduce inference time
while preserving reconstruction quality [3.13].
Collectively, these findings underscore the clinical
viability of diffusion-based models and their
potential to serve as a cornerstone for next-
generation diagnostic imaging workflows.

5. Conclusion
Diffusion-based models (DPMs) have
emerged as a transformative advancement in the
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field of medical imaging, particularly for high-
resolution reconstruction and denoising tasks. The
empirical evidence presented in this study
demonstrates that DPMs consistently outperform
conventional convolutional neural networks
(CNNs) and transformer-based architectures across
both quantitative metrics (such as PSNR and SSIM)
and perceptual quality assessments. Their
probabilistic generative framework enables more
accurate recovery of fine anatomical structures,
reducing artifacts and preserving clinically
significant details that are often lost in other
methods. The superior performance of DPMs holds
substantial implications for clinical practice. By
facilitating the reconstruction of high-quality
images from low-dose or accelerated scans, DPMs
can enable safer imaging protocols such as reducing
patient exposure to ionizing radiation in CT and PET
scans or shortening scan times in MRI without
compromising diagnostic quality. Moreover, their
robust denoising capabilities support more reliable
interpretation in challenging cases with suboptimal
input data. These advantages position DPMs as a
cornerstone for next-generation diagnostic imaging
workflows. Their integration into real-time clinical
applications could lead to more efficient resource
utilization, improved diagnostic accuracy, and
better patient outcomes. Continued research into
model optimization, interpretability, and hardware
deployment will be essential to fully realize the
clinical translation of these powerful generative
model
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