Intervention with A Multi-Component Exercise Program in Managing Fatigue Perception in Individuals Who Experienced COVID-19: A Quasi-Experimental Study
DOI:
https://doi.org/10.5281/zenodo.14553367Keywords:
COVID-19, fatigue, Multi-component exercise, Post COVID-19 sequelaeAbstract
Introduction: Following the acute phase of respiratory illness caused by the SARS-CoV-2 virus, a significant number of patients report persistent fatigue. Fatigue is considered debilitating and disabling, affecting quality of life, work performance, and social/familial relationships. Multicomponent exercise prescription and dosage in its various forms has proven to be a preventive and therapeutic strategy in numerous medical conditions. However, to date, evidence regarding its effect on fatigue secondary to SARS-CoV-2 infection remains scarce. Objective: To evaluate the effect of a multicomponent exercise program on self-perceived fatigue, aerobic capacity, lower-limb muscle strength, body fat percentage, and muscle mass in individuals aged 30 to 60 years with history of COVID-19.
Methodology: A quasi-experimental study (pretest-posttest trial) included 15 individuals reporting fatigue via the Fatigue Severity Scale (FSS) and with a history of more than 12 weeks post-SARS-CoV-2 infection. All participants completed a 12-week multicomponent exercise program. The primary outcome was a reduction in fatigue perception. Secondary outcomes included aerobic capacity, lower-limb muscle strength, body fat percentage, and muscle mass. Results: Self-perceived fatigue decreased by 2.5 points (95% CI: 1.7–3.2; p = 0.001). Aerobic capacity increased by 10.8 mL/kg/min (95% CI: 5.7–19.9; p = 0.006). No statistically significant changes were observed in muscle strength, body fat percentage, or muscle mass at the end of the follow-up period. Conclusions: The multicomponent exercise program for reducing post-COVID-19 self-perceived fatigue can be considered an effective tool for managing post-COVID-19 sequelae in populations with persistent symptoms who have not received prior treatment.
References
Liu, X., Liu, C., Liu, G., Luo, W., & Xia, N. (2020). COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics, 10(17), 7821–7835. [PubMed]
WHO. (2023). WHO Coronavirus (COVID-19) Dashboard. [CrossRef]
CONAHCYT. (2021). COVID-19 México. [CrossRef]
Greenhalgh, T., Knight, M., A’Court, C., Buxton, M., & Husain, L. (2020). Management of post-acute covid-19 in primary care. The BMJ, 370. [PubMed]
Johns Hopkins. (2020). Coronavirus Resource Center. University and Medicine. [CrossRef]
Venkatesan, P. (2021). NICE guideline on long COVID. The Lancet Respiratory Medicine, 9(2), 129. [PubMed]
Kamal, M., Abo, M., Amal, O., & Haitham, H. (2021). Assessment and characterisation of post-COVID-19 manifestations, (September 2020), 1–5. [PubMed]
Nasserie, T., Hittle, M., & Goodman, S. N. (2021). Assessment of the Frequency and Variety of Persistent Symptoms Among Patients With COVID-19. JAMA Network Open, 4(5), e2111417. [PubMed]
Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., Sepulveda, R., Rebolledo, P. A., Cuapio, A., & Villapol, S. (2021). More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. [PubMed]
Carfì A, Bernabei R, Landi F, et al. (2020). Persistent symptoms in patients after acute COVID-19. JAMA, 324, 603–605. [PubMed]
Tenforde MW, Kim SS, Lindsell CJ, E. (2020). CDC COVID-19 Response Team. IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network — United States, March-June 2020. [PubMed]
Salman, D., Vishnubala, D., Le Feuvre, P., Beaney, T., Korgaonkar, J., Majeed, A., & McGregor, A. H. (2021). Returning to physical activity after covid-19. The BMJ, 372, 1–6. [PubMed]
Wu, F. (n.d.). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. The Lancet. [CrossRef]
Glaus, A., Crow, R., & Hammond, S. (1996). A qualitative study to explore the concept of fatigue/tiredness in cancer patients and in healthy individuals. Supportive Care in Cancer, 4(2), 82–96. [PubMed]
Duarte Ayala, R. E., Velasco Rojano, Á. E., Sánchez Sosa, J. J., & Reyes Lagunes, L. I. (2017). Adaptación y validación de la escala de impacto de fatiga. Acta de Investigación Psicológica, 7(1), 2585–2592. [CrossRef]
VanElzakker, M. B., Brumfield, S. A., & Lara Mejia, P. S. (2019). Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Frontiers in Neurology, 9. [PubMed]
Batra, A., Clark, J. R., LaHaye, K., Shlobin, N. A., Hoffman, S. C., Orban, Z. S., Liotta, E. M. (2021). Transcranial Doppler Ultrasound Evidence of Active Cerebral Embolization in COVID-19. Journal of Stroke and Cerebrovascular Diseases, 30(3), 105542. [PubMed]
Susan E. Hardy, and S. A. S. (2010). Qualities of Fatigue and Associated Chronic Conditions Among Older Adults. J Pain Symptom Manage, 39(6), 1033–1042. [PubMed]
VGONTZAS, A. N., BIXLER, E. O., & CHROUSOS, G. P. (2006). Obesity‐Related Sleepiness and Fatigue. Annals of the New York Academy of Sciences, 1083(1), 329–344. [PubMed]
Cooper, R., Hardy, R., Bann, D., Sayer, A. A., Ward, K. A., Adams, J. E., & Kuh, D. (2014). Body mass index from age 15 years onwards and muscle mass,strength, and quality in early old age: Findings from the MRC national survey of health and development. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 69(10), 1253–1259. [PubMed]
Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, et al. (2020). Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE, 15(11). [PubMed]
Ferrandi, P.J.; Always, S.E.; Mohamed, J. S. (2020). The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. Journal of Applied Physiology, 129, 864–867. [PubMed]
Cabrera Martimbianco, A. L., Pacheco, R. L., Bagattini, Â. M., & Riera, R. (2021). Frequency, signs and symptoms, and criteria adopted for long COVID‐19: A systematic review. International Journal of Clinical Practice, 75(10). [PubMed]
Rooney, S., Wood, L., Moffat, F., & Paul, L. (2019). Is Fatigue Associated With Aerobic Capacity and Muscle Strength in People With Multiple Sclerosis: A Systematic Review and Meta-analysis. Archives of Physical Medicine and Rehabilitation, 100(11), 2193–2204. [PubMed]
Acevedo, M., Valentino, G., Bustamante, M. J., Orellana, L., Adasme, M., Baraona, F., Navarrete, C. (2020). Cardiorespiratory fitness improves prediction of mortality of standard cardiovascular risk scores in a Latino population. Clinical Cardiology, 43(10), 1167–1174. [PubMed]
Gaber, T. (2021). Assessment and management of post‐COVID19 fatigue. Progress in Neurology and Psychiatry, 25(1), 36–39. [CrossRef]
Rupp, T. L., Garbarino, S., Guglielmi, O., & Lanteri, P. (2017). Concepts of Fatigue, Sleepiness, and Alertness☆. In Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. [CrossRef]
Raman, B., Cassar, M. P., Tunnicliffe, E. M., Filippini, N., Griffanti, L., Alfaro-Almagro, F., Neubauer, S. (2021). Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine, 31, 100683. [PubMed]
Krupp, L. B. (1989). The Fatigue Severity Scale. Archives of Neurology, 46(10), 1121. [PubMed]
Duarte, R. E., Velasco, E., Sánchez-Sosa, J. J., & Reyes-Lagunes, L. I. (2019). Validación psicométrica de la Escala de gravedad de fatiga en médicos residentes mexicanos. Educación Médica, 20(1), 28–36. [CrossRef]
Velasco-Rojano, E. (2017). Validación de la Escala de Gravedad de Fatiga en Población General de la Ciudad de México. Revista Evaluar, 17(2). [CrossRef]
Lapp, C. W., & John, J. F. (2021). Managing COVID-19 post viral Fatigue Syndrome. Fatigue: Biomedicine, Health & Behavior, 9(1), 1–8. [CrossRef]
van Erp, L. W., Roosenboom, B., Komdeur, P., Dijkstra-Heida, W., Wisse, J., Horjus Talabur Horje, C. S., … Groenen, M. J. M. (2021). Improvement of Fatigue and Quality of Life in Patients with Quiescent Inflammatory Bowel Disease Following a Personalized Exercise Program. Digestive Diseases and Sciences, 66(2), 597–604. [PubMed]
Moss-Morris, R., Harrison, A. M., Safari, R., Norton, S., van der Linden, M. L., Picariello, F., Mercer, T. (2021). Which behavioural and exercise interventions targeting fatigue show the most promise in multiple sclerosis? A systematic review with narrative synthesis and meta-analysis. Behaviour Research and Therapy, 137, 103464. [PubMed]
Gradidge, P. J. L., Torres, G., Constantinou, D., Zanwar, P. P., Pinto, S. M., Negm, A., & Heyn, P. C. (2023). Exercise Reporting Template for Long COVID Patients: A Rehabilitation Practitioner Guide. Archives of Physical Medicine and Rehabilitation. [PubMed]
Jimeno-Almazán, A., Pallarés, J. G., Buendía-Romero, Á., Martínez-Cava, A., Franco-López, F., Sánchez-Alcaraz Martínez, B. J., Courel-Ibáñez, J. (2021). Post-COVID-19 Syndrome and the Potential Benefits of Exercise. International Journal of Environmental Research and Public Health, 18(10), 5329. [PubMed]
Hayward, V. Ph. D. (2001). Evaluación y prescripción del ejercicio (2da Edición.). New Mexico. : Paidotribo.
American College of Sports Medicine. (n.d.). Principios generales de la prescripción del ejercicio. In Guidelines for Exercise Testing and Prescription (10a Edición.). Wolters Kluwer.
ACSM. (2023). ACSM´S Guidelines for Exercise Testing and Prescription. (Lippincott, Williams, & Wilkins, Eds.) (11th ed.).
Larun, L., Brurberg, K. G., Odgaard-Jensen, J., & Price, J. R. (2019). Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews, 2021(3). [PubMed]
Löllgen, H., Bachl, N., Papadopoulou, T., Shafik, A., Holloway, G., Vonbank, K., Zupet, P. (2020). Recommendations for return to sport during the SARS-CoV-2 pandemic. 10–12. [PubMed]
Figueroa-Cavero, F. (2024). Intervention with a multi-component exercise program in managing fatigue perception in individuals who experienced COVID-19: a quasi-experimental study. (Master’s Thesis). Universidad Nacional Autonoma de Mexico, Mexico City.
Arienti, C., Cordani, C., Lazzarini, S. G., Del Furia, M. J., Negrini, S., & Kiekens, C. (2022). Fatigue, post-exertional malaise and orthostatic intolerance: a map of Cochrane evidence relevant to rehabilitation for people with post COVID-19 condition. European Journal of Physical and Rehabilitation Medicine, 58(6), 857–863. [PubMed]
Ferraro, F., Calafiore, D., Dambruoso, F., Guidarini, S., & de Sire, A. (2021). COVID‐19 related fatigue: Which role for rehabilitation in post‐COVID‐19 patients? A case series. Journal of Medical Virology, 93(4), 1896–1899. [PubMed]
Daynes, E., Gerlis, C., Chaplin, E., Gardiner, N., & Singh, S. J. (2021). Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition – A cohort study. Chronic Respiratory Disease, 18, 14799731211015691. [PubMed]
Wootton, S. L., King, M., Alison, J. A., Mahadev, S., & Chan, A. S. L. (2020). COVID-19 rehabilitation delivered via a telehealth pulmonary rehabilitation model: a case series. Respirology Case Reports, 8(8). [PubMed]
Tozato, C., Fernandes Costa Ferreira, B., Pereira Dalavina, J., & Vitelli Molinari, C. (2021). Cardiopulmonary rehabilitation in post-COVID-19 patients: case series. Revista Brasileira de Terapia Intensiva, 33(1). [PubMed]
Ahmed, I., Inam, A. Bin, Belli, S., Ahmad, J., Khalil, W., & Jafar, M. M. (2022). Effectiveness of aerobic exercise training program on cardio-respiratory fitness and quality of life in patients recovered from COVID-19. European Journal of Physiotherapy, 24(6), 358–363. [CrossRef]
Bickton, F. M., Chisati, E., Rylance, J., & Morton, B. (2021). An Improvised Pulmonary Telerehabilitation Program for Postacute COVID-19 Patients Would Be Feasible and Acceptable in a Low-Resource Setting. American Journal of Physical Medicine & Rehabilitation, 100(3), 209–212. [PubMed]
WHO. (n.d.). WHO Coronavirus. [CrossRef]
Flaskamp, L., Roubal, C., Uddin, S., Sotzny, F., Kedor, C., Bauer, S., Seifert, M. (2022). Serum of Post-COVID-19 Syndrome Patients with or without ME/CFS Differentially Affects Endothelial Cell Function In Vitro. Cells, 11(15). [PubMed]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Active & Healthy Aging
This work is licensed under a Creative Commons Attribution 4.0 International License.